Channel: Python/ django
🛠️ Copier — удобный инструмент для создания и обновления проектов из шаблонов. Эта Python-утилита умеет работать как с локальными путями, так и с Git-репозиториями, подставляя переменные в файлы любого формата. Главная фишка Copier — это аккуратная работа с существующими файлами: он не перезаписывает их без явного указания.
Инструмент будет полезен тем, кто часто создаёт однотипные проекты или хочет автоматизировать их обновление. Шаблоны поддерживают сложную логику через Jinja2, а настройки задаются в простом YAML-формате. Для начала работы достаточно установить Copier через pipx или pip. Проект развивается при поддержке сообщества и доступен под лицензией MIT.
🤖 GitHub
@pythonl
Инструмент будет полезен тем, кто часто создаёт однотипные проекты или хочет автоматизировать их обновление. Шаблоны поддерживают сложную логику через Jinja2, а настройки задаются в простом YAML-формате. Для начала работы достаточно установить Copier через pipx или pip. Проект развивается при поддержке сообщества и доступен под лицензией MIT.
🤖 GitHub
@pythonl
Хочешь не просто пописать код, а взорвать мозг? Вот 5 уникальных идей, которые объединяют ИИ, терминальные интерфейсы, сетевое взаимодействие и системное программирование. Каждый проект можно собрать за 1–2 дня, если знаешь, с какой стороны подойти.
🧠 1. Self-Healing CLI‑агент (автоматический отладчик ошибок)
🔹 Идея: Напиши CLI-инструмент, который анализирует ошибки в Python‑скриптах и предлагает (или вносит) правки к коду автоматически с помощью LLM.
🔧 Как реализовать:
• Используй
subprocess
для запуска целевого скрипта и перехвата stderr • Извлеки traceback → отправь в OpenAI / LM Studio через API
• Получи фикс → распарси результат и применяй его к AST с помощью
RedBaron
или ast
• Верифицируй: перезапусти код и проверь, исчезла ли ошибка
• Добавь флаг
--auto-fix
и интерактивный режим🧩 Применение: автопомощник в CI/CD, дебагер в редакторах, обучающий инструмент
📡 2. P2P-блокнот с mesh-синхронизацией
🔹 Идея: Заметки, которые синхронизируются без облака — через локальную сеть или Bluetooth, используя ZeroConf.
🔧 Как реализовать:
•
zeroconf
для автоматического обнаружения других устройств •
sqlite
как локальное хранилище + watchdog
для отслеживания изменений •
pynacl
для шифрования трафика • Используй TCP/UDP сокеты для передачи изменений
• Можно добавить визуальный CLI с
urwid
или textual
🧩 Применение: приватные P2P‑заметки, оффлайн-заметки в экспедициях, лайтовый knowledge base
🧬 3. AI‑отладчик чужого репозитория
🔹 Идея: Инструмент, который загружает чужой репозиторий, строит граф зависимостей и автоматически находит баги, недочёты, недокументированный код — и объясняет их.
🔧 Как реализовать:
•
gitpython
для клонирования проекта •
networkx
или pydeps
для визуализации модульной структуры •
mypy
, flake8
, pylint
и bandit
для анализа • Сводка отправляется в LLM (например, OpenAI API) для пояснений: "вот потенциально уязвимый участок, вот почему"
• Визуализируй через
rich
, graphviz
, или в браузере через streamlit
🧩 Применение: ревью чужого кода, onboarding новых участников в open-source
🎮 4. CLI-игра с live‑физикой прямо в терминале
🔹 Идея: Реализуй рогалик или простую 2D-игру с настоящей физикой (гравитацией, столкновениями) в терминале.
🔧 Как реализовать:
•
curses
или blessed
для отрисовки •
pymunk
или box2d
для физики (адаптируй под 2D-сцену) • Все объекты — текстовые символы
• События обрабатываются через
asyncio
, и всё должно работать в real‑time • Можно добавить оружие, отскоки, ловушки и интерактивные зоны
🧩 Применение: визуальное развлечение, обучение физике, красивое демо для хакатона
🕵️ 5. AI-инспектор Linux-системы
🔹 Идея: Создай скрипт, который в реальном времени следит за файлами, сетями, процессами, и при странной активности — показывает, почему это может быть подозрительно (с пояснением от ИИ).
🔧 Как реализовать:
• Используй
psutil
, inotify
, socket
, netifaces
• Собирай метрики: кто пишет в
/tmp
, кто открывает нестандартные порты, кто занимает слишком много CPU • Фильтруй необычные события → формируй контекст → передавай в LLM
• ИИ объясняет: "этот процесс пытается слушать порт 4444 в фоне — это может быть реверс‑шелл"
• CLI-интерфейс через
rich
или textual
🧩 Применение: оффлайн-альтернатива Falcon / CrowdStrike, полезный тул
💡 Всё это можно собрать за 1–2 дня, если уже умеешь работать с Python-инструментами, API и системными вызовами. И каждый проект можно расширять в полноценный open-source продукт.
@pythonl
#python #weekendprojects #ai #cli #sysadmin #funprojects #hackathon #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
🚦
Что это такое:
📌 Возможности:
• Поддержка популярных алгоритмов: token bucket, fixed window, leaky bucket
• Работает как с обычными, так и с асинхронными функциями
• Поддерживает Redis и другие хранилища для распределённого ограничения
• Гибкая настройка: лимиты, ключи, длительность окна, своя логика
• Простое применение через декораторы
🧪 Пример:
🔧 Где применить:
• Ограничение частоты запросов к внешним API
• Защита от перегрузки микросервисов
• Контроль доступа к ресурсам внутри приложения
• Настройка rate-limit в фоновом обработчике или очереди
✅ Почему стоит попробовать:
premier — лёгкая, понятная и гибкая библиотека. Она упрощает внедрение rate limiting, особенно если нужно масштабироваться или работать в асинхронной среде.
Если строишь что-то распределённое или просто не хочешь случайно “положить” сервис из-за частых вызовов — premier отлично подойдёт.
📌 Github
@pythonl
premier
— удобный инструмент для ограничения частоты вызовов в PythonЧто это такое:
premier
— это библиотека для контроля скорости вызовов функций в Python. Она помогает ограничить нагрузку на API, базу данных или любой другой ресурс, чтобы не получить отказ или блокировку.📌 Возможности:
• Поддержка популярных алгоритмов: token bucket, fixed window, leaky bucket
• Работает как с обычными, так и с асинхронными функциями
• Поддерживает Redis и другие хранилища для распределённого ограничения
• Гибкая настройка: лимиты, ключи, длительность окна, своя логика
• Простое применение через декораторы
🧪 Пример:
from premier import throttler, ThrottleAlgo, RedisHandler
@throttler.fixed_window(quota=3, duration=5)
def request(url: str):
# максимум 3 вызова каждые 5 секунд
...
@throttler.token_bucket(quota=5, duration=60)
async def async_request(...):
# асинхронный токен-бакет
...
🔧 Где применить:
• Ограничение частоты запросов к внешним API
• Защита от перегрузки микросервисов
• Контроль доступа к ресурсам внутри приложения
• Настройка rate-limit в фоновом обработчике или очереди
✅ Почему стоит попробовать:
premier — лёгкая, понятная и гибкая библиотека. Она упрощает внедрение rate limiting, особенно если нужно масштабироваться или работать в асинхронной среде.
Если строишь что-то распределённое или просто не хочешь случайно “положить” сервис из-за частых вызовов — premier отлично подойдёт.
📌 Github
@pythonl
HTML Embed Code: