Warning: mkdir(): No space left on device in /var/www/hottg/post.php on line 59

Warning: file_put_contents(aCache/aDaily/2025-07-22/post/pricingcommunity/--): Failed to open stream: No such file or directory in /var/www/hottg/post.php on line 72
Ну и закончить цикл постов про ML можно самым сложным и красивым из того @ЦенОбразование Ӏ KeepRise
TG Telegram Group & Channel
ЦенОбразование Ӏ KeepRise | United States America (US)
Create: Update:

Ну и закончить цикл постов про ML можно самым сложным и красивым из того, чего мы достигли на текущий момент – пакетная оптимизация. Мерседес от мира ценообразования, не иначе.

Суть вот в чем:
Есть гипотеза, которая звучит так: лучшая цена для отдельного SKU - это не лучшая цена в рамках KPI всей категории. Например, лучшая цена для яблока сорта Гала может переманить на себя спрос с других сортов и в итоге не выигрывать максимум value для компании. Как это обстоятельство преодолеть? Необходимо проектировать подбор не по одной цене, а сразу по набору (Отсюда и название - пакетная оптимизация). Суть её в том, чтобы связать работу сразу нескольких моделей и проектировать контекст для контекста. Тут проще списком:
1️⃣ Мы отслеживаем силу влияния цены одного товара на спрос другого. Популярным и знакомым языком это называет "хало"-эффект или каннибализация спроса;
2️⃣ Дальше мы берем оптимизационную модель и выбираем не одну "лучшую цену", а набор таких "лучших цен";
3️⃣ Эти наборы (Цена Х на SKU 1, Цена Y на SKU 2 и т.д.) мы комбинируем между собой и учитывая силу хало-эффекта мы проектируем весь набор.

Есть определенный блок в виде данных, т.к. проработать нужно многократно увеличившийся массив. Если в случае с классической оптимизацией вычислительная мощность последовательно двигается от одного SKU к другому, то пакетная оптимизация рассчитывает еще и комбинации других возможных исходов.

Иногда, описывая эту концепцию, сталкиваемся с возражением вроде "У нас это уже реализовано", но в действительности понимание останавливается где-то на первом пункте. А если Вы очень крупная компания и заинтересованы в пилоте подобного решения - пишите @revenuemaker , организуем встречу и обсудим.

Ну и закончить цикл постов про ML можно самым сложным и красивым из того, чего мы достигли на текущий момент – пакетная оптимизация. Мерседес от мира ценообразования, не иначе.

Суть вот в чем:
Есть гипотеза, которая звучит так: лучшая цена для отдельного SKU - это не лучшая цена в рамках KPI всей категории. Например, лучшая цена для яблока сорта Гала может переманить на себя спрос с других сортов и в итоге не выигрывать максимум value для компании. Как это обстоятельство преодолеть? Необходимо проектировать подбор не по одной цене, а сразу по набору (Отсюда и название - пакетная оптимизация). Суть её в том, чтобы связать работу сразу нескольких моделей и проектировать контекст для контекста. Тут проще списком:
1️⃣ Мы отслеживаем силу влияния цены одного товара на спрос другого. Популярным и знакомым языком это называет "хало"-эффект или каннибализация спроса;
2️⃣ Дальше мы берем оптимизационную модель и выбираем не одну "лучшую цену", а набор таких "лучших цен";
3️⃣ Эти наборы (Цена Х на SKU 1, Цена Y на SKU 2 и т.д.) мы комбинируем между собой и учитывая силу хало-эффекта мы проектируем весь набор.

Есть определенный блок в виде данных, т.к. проработать нужно многократно увеличившийся массив. Если в случае с классической оптимизацией вычислительная мощность последовательно двигается от одного SKU к другому, то пакетная оптимизация рассчитывает еще и комбинации других возможных исходов.

Иногда, описывая эту концепцию, сталкиваемся с возражением вроде "У нас это уже реализовано", но в действительности понимание останавливается где-то на первом пункте. А если Вы очень крупная компания и заинтересованы в пилоте подобного решения - пишите @revenuemaker , организуем встречу и обсудим.
🔥12👍4❤‍🔥2


>>Click here to continue<<

ЦенОбразование Ӏ KeepRise






Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)


Warning: Undefined array key 3 in /var/www/hottg/function.php on line 115

Fatal error: Uncaught mysqli_sql_exception: Too many connections in /var/www/db.php:16 Stack trace: #0 /var/www/db.php(16): mysqli_connect() #1 /var/www/hottg/function.php(212): db() #2 /var/www/hottg/function.php(115): select() #3 /var/www/hottg/post.php(351): daCache() #4 /var/www/hottg/route.php(63): include_once('...') #5 {main} thrown in /var/www/db.php on line 16