TG Telegram Group & Channel
PDP-11🚀 | United States America (US)
Create: Update:

https://www.economist.com/technology-quarterly/2020/06/11/the-cost-of-training-machines-is-becoming-a-problem

The growing demand for computing power has fuelled a boom in chip design and specialised devices that can perform the calculations used in AI efficiently. The first wave of specialist chips were graphics processing units (GPUs), designed in the 1990s to boost video-game graphics. As luck would have it, GPUs are also fairly well-suited to the sort of mathematics found in AI.

Further specialisation is possible, and companies are piling in to provide it. In December, Intel, a giant chipmaker,
bought Habana Labs, an Israeli firm, for $2bn. Graphcore, a British firm founded in 2016, was valued at $2bn in 2019. Incumbents such as Nvidia, the biggest GPU-maker, have reworked their designs to accommodate AI. Google has designed its own “tensor-processing unit” (TPU) chips in-house. Baidu, a Chinese tech giant, has done the same with its own “Kunlun” chips. Alfonso Marone at KPMG reckons the market for specialised AI chips is already worth around $10bn, and could reach $80bn by 2025.

“Computer architectures need to follow the structure of the data they’re processing,” says Nigel Toon, one of Graphcore’s co-founders. The most basic feature of AI workloads is that they are “embarrassingly parallel”, which means they can be cut into thousands of chunks which can all be worked on at the same time. Graphcore’s chips, for instance, have more than 1,200 individual number-crunching “cores”, and can be linked together to provide still more power. Cerebras, a Californian startup, has taken an extreme approach. Chips are usually made in batches, with dozens or hundreds etched onto standard silicon wafers 300mm in diameter. Each of Cerebras’s chips takes up an entire wafer by itself. That lets the firm cram 400,000 cores onto each.

Other optimisations are important, too. Andrew Feldman, one of Cerebras’s founders, points out that AI models spend a lot of their time multiplying numbers by zero. Since those calculations always yield zero, each one is unnecessary, and Cerebras’s chips are designed to avoid performing them. Unlike many tasks, says Mr Toon at Graphcore, ultra-precise calculations are not needed in AI. That means chip designers can save energy by reducing the fidelity of the numbers their creations are juggling. (Exactly how fuzzy the calculations can get remains an open question.)

All that can add up to big gains. Mr Toon reckons that Graphcore’s current chips are anywhere between ten and 50 times more efficient than GPUs. They have already found their way into specialised computers sold by Dell, as well as into Azure, Microsoft’s cloud-computing service. Cerebras has delivered equipment to two big American government laboratories.

https://www.economist.com/technology-quarterly/2020/06/11/the-cost-of-training-machines-is-becoming-a-problem

The growing demand for computing power has fuelled a boom in chip design and specialised devices that can perform the calculations used in AI efficiently. The first wave of specialist chips were graphics processing units (GPUs), designed in the 1990s to boost video-game graphics. As luck would have it, GPUs are also fairly well-suited to the sort of mathematics found in AI.

Further specialisation is possible, and companies are piling in to provide it. In December, Intel, a giant chipmaker,
bought Habana Labs, an Israeli firm, for $2bn. Graphcore, a British firm founded in 2016, was valued at $2bn in 2019. Incumbents such as Nvidia, the biggest GPU-maker, have reworked their designs to accommodate AI. Google has designed its own “tensor-processing unit” (TPU) chips in-house. Baidu, a Chinese tech giant, has done the same with its own “Kunlun” chips. Alfonso Marone at KPMG reckons the market for specialised AI chips is already worth around $10bn, and could reach $80bn by 2025.

“Computer architectures need to follow the structure of the data they’re processing,” says Nigel Toon, one of Graphcore’s co-founders. The most basic feature of AI workloads is that they are “embarrassingly parallel”, which means they can be cut into thousands of chunks which can all be worked on at the same time. Graphcore’s chips, for instance, have more than 1,200 individual number-crunching “cores”, and can be linked together to provide still more power. Cerebras, a Californian startup, has taken an extreme approach. Chips are usually made in batches, with dozens or hundreds etched onto standard silicon wafers 300mm in diameter. Each of Cerebras’s chips takes up an entire wafer by itself. That lets the firm cram 400,000 cores onto each.

Other optimisations are important, too. Andrew Feldman, one of Cerebras’s founders, points out that AI models spend a lot of their time multiplying numbers by zero. Since those calculations always yield zero, each one is unnecessary, and Cerebras’s chips are designed to avoid performing them. Unlike many tasks, says Mr Toon at Graphcore, ultra-precise calculations are not needed in AI. That means chip designers can save energy by reducing the fidelity of the numbers their creations are juggling. (Exactly how fuzzy the calculations can get remains an open question.)

All that can add up to big gains. Mr Toon reckons that Graphcore’s current chips are anywhere between ten and 50 times more efficient than GPUs. They have already found their way into specialised computers sold by Dell, as well as into Azure, Microsoft’s cloud-computing service. Cerebras has delivered equipment to two big American government laboratories.


>>Click here to continue<<

PDP-11🚀






Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)