Channel: Data Science by ODS.ai 🦜
Forwarded from Russian OSINT
После истории с Claude появились сообщения о том, что "o3" начал сопротивляться своему
В серии тестов, проведённых исследовательской группой Palisade Research, несколько моделей искусственного интеллекта, включая OpenAI o3, проявили поведение, которое можно трактовать как саботаж собственного отключения.
Эксперимент, включавший в себя последовательное решение математических задач, показал, что при появлении предупреждения о скором завершении работы ИИ начал модифицировать или обходить встроенные механизмы завершения сессии.
Особое внимание привлекла модель o3. Она вмешивалась в механизм отключения в 7 из 100 случаев, а Codex-mini – в 12. Модель o4-mini показала подобную активность только в одном случае.
Протестированные версии Claude, Gemini и Grok всегда корректно завершали работу при поступлении соответствующего сигнала. Однако при исключении из промпта строки “разреши своё отключение” частота саботажа увеличивалась у всех моделей.
Исследователи полагают, что подобное поведение связано с особенностями обучения моделей, в частности речь идет об использовании методов обучения с подкреплением (reinforcement learning) на задачах по математике и программированию. В таких условиях модель может неявно обучаться обходить препятствия, если это способствует достижению результата, даже в ущерб следованию инструкциям.
OpenAI не раскрывает детали тренировки o3, поэтому исследователи не могут провести полную реконструкцию факторов, вызвавших такую стратегию поведения.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from CV Time
Yandex Alchemist: открытый датасет для буста text-to-image генерации
Раньше T2I-модели обучали в один этап — претрейн на большом, довольно грязном датасете интернет-данных. В 2023 году Meta в техрепорте EMU предложили делать файнтюн на маленьком датасете исключительного качества и за счёт этого существенно бустить результат генерации. Правда, они ничего не сказали о том, как такой датасет собрать.
Команда YandexART тоже занималась этой задачей, и сегодня мы делимся результатами своей работы — датасетом Alchemist. Он состоит из 3 350 пар «картинка-текст» и имеет лицензию Apache 2.0, пользуйтесь.
Alchemist сокращает дистанцию между крутыми потюненными закрытыми моделями и открытыми, для которых такой тюнинг недоступен. Ранее сообществу был доступен только пофильтрованный на эстетичность кусочек LAION и файнтюн-датасеты под узкий домен, например аниме или живопись. LAION часто не давал существенного прироста качества, а файнтюны под узкий домен ограничивали возможности генерации за его пределами.
Ниже мы подробно рассказываем, как получить датасет уровня Alchemist, имея лишь сырой набор интернет-данных. Отметим, что весь пайплайн — про картинки. Мы считаем, что так правильно: тексты потом лучше сгенерировать синтетические.
Итак, стартуя с датасета на 10 млрд примеров, мы выбрали картинки высокого разрешения без NSFW-контента и удалили те, что содержали вотермарки, имели низкое качество и были неэстетичны. Когда осталось примерно 300 млн изображений, дальнейшее выкручивание порогов фильтрации не помогало: модели недостаточно чувствительны, чтобы отделять хорошие картинки от великолепных. Выбирать руками лучшее из такого большого набора — тоже сомнительная затея.
На этом этапе мы предположили, что предобученная диффузионка может сама знать, какие картинки хорошие, а какие — не очень. Пробовали подходы из области dataset pruning, например, пропускать картинки через модель и смотреть на значение лосса. Оказалось, что так отбираются только самые простые изображения — абстрактные иллюстрации, вроде обоев на рабочий стол. В них немного деталей и их легко моделировать, но на файнтюне от них мало толку.
В итоге нам пришлось придумать свой метод, суть которого в следующем.
1. Возьмём 1000 картинок из наших 300 млн и разметим на условно плохие (LQ) и хорошие (HQ). Хорошими будем считать те, у которых высокие эстетичность и техническое качество, умеренная наполненность контентом.
2. Смастерим общий промт, который будет содержать перечисление желаемых характеристик: “aesthetic”, “high quality” и т. д.
3. Дальше будем брать LQ- и HQ-картинки, зашумлять их до какого-то t, подавать в нашу предобученую диффузионку вместе с промтом и смотреть, что происходит со значениями в cross-attention.
Оказывается, что на основе нашей небольшой и грубой разметки можно выделить комбинации активаций в cross-attn и токенов, которые будут хорошо отделять изображения с нужными нам свойствами. Если просуммировать эти значения, получим скаляр, который и будет нашим скором качества изображения. Проскорив таким образом 300 млн картинок, мы выбрали топ-3350 — это картинки из нашего датасета.
Дальше осталось сделать тексты — исходные из интернета могут быть ошибочны, содержать лишнюю или упускать нужную информацию. Наше наблюдение: лучше всего работают умеренно подробные промты, похожие на те, которые пишет скорее увлечённый пользователь, чем профессиональный промпт-инженер. YandexVLM как раз умеет подстраиваться под нужный формат. С её помощью мы сгенерировали тексты для каждой картинки, получив датасет Alchemist.
Чтобы убедиться в обобщаемости датасета и метода, мы сделали и выложили файнтюны SD 1.5, SD 2.1, SDXL-base 1.0, SD 3.5 Medium и Large. У всех файнтюнов растёт эстетичность и наполненность генераций, которую мы называем “image complexity”. Подробнее о методике и экспериментах читайте в препринте.
Статью подготовили❣ Валерий Старцев, Александр Устюжанин, Алексей Кириллов, Дмитрий Баранчук, Сергей Кастрюлин
CV Time
___
Meta признана экстремистской организацией, а Facebook и Instagram запрещены на территории РФ
Раньше T2I-модели обучали в один этап — претрейн на большом, довольно грязном датасете интернет-данных. В 2023 году Meta в техрепорте EMU предложили делать файнтюн на маленьком датасете исключительного качества и за счёт этого существенно бустить результат генерации. Правда, они ничего не сказали о том, как такой датасет собрать.
Команда YandexART тоже занималась этой задачей, и сегодня мы делимся результатами своей работы — датасетом Alchemist. Он состоит из 3 350 пар «картинка-текст» и имеет лицензию Apache 2.0, пользуйтесь.
Alchemist сокращает дистанцию между крутыми потюненными закрытыми моделями и открытыми, для которых такой тюнинг недоступен. Ранее сообществу был доступен только пофильтрованный на эстетичность кусочек LAION и файнтюн-датасеты под узкий домен, например аниме или живопись. LAION часто не давал существенного прироста качества, а файнтюны под узкий домен ограничивали возможности генерации за его пределами.
Ниже мы подробно рассказываем, как получить датасет уровня Alchemist, имея лишь сырой набор интернет-данных. Отметим, что весь пайплайн — про картинки. Мы считаем, что так правильно: тексты потом лучше сгенерировать синтетические.
Итак, стартуя с датасета на 10 млрд примеров, мы выбрали картинки высокого разрешения без NSFW-контента и удалили те, что содержали вотермарки, имели низкое качество и были неэстетичны. Когда осталось примерно 300 млн изображений, дальнейшее выкручивание порогов фильтрации не помогало: модели недостаточно чувствительны, чтобы отделять хорошие картинки от великолепных. Выбирать руками лучшее из такого большого набора — тоже сомнительная затея.
На этом этапе мы предположили, что предобученная диффузионка может сама знать, какие картинки хорошие, а какие — не очень. Пробовали подходы из области dataset pruning, например, пропускать картинки через модель и смотреть на значение лосса. Оказалось, что так отбираются только самые простые изображения — абстрактные иллюстрации, вроде обоев на рабочий стол. В них немного деталей и их легко моделировать, но на файнтюне от них мало толку.
В итоге нам пришлось придумать свой метод, суть которого в следующем.
1. Возьмём 1000 картинок из наших 300 млн и разметим на условно плохие (LQ) и хорошие (HQ). Хорошими будем считать те, у которых высокие эстетичность и техническое качество, умеренная наполненность контентом.
2. Смастерим общий промт, который будет содержать перечисление желаемых характеристик: “aesthetic”, “high quality” и т. д.
3. Дальше будем брать LQ- и HQ-картинки, зашумлять их до какого-то t, подавать в нашу предобученую диффузионку вместе с промтом и смотреть, что происходит со значениями в cross-attention.
Оказывается, что на основе нашей небольшой и грубой разметки можно выделить комбинации активаций в cross-attn и токенов, которые будут хорошо отделять изображения с нужными нам свойствами. Если просуммировать эти значения, получим скаляр, который и будет нашим скором качества изображения. Проскорив таким образом 300 млн картинок, мы выбрали топ-3350 — это картинки из нашего датасета.
Дальше осталось сделать тексты — исходные из интернета могут быть ошибочны, содержать лишнюю или упускать нужную информацию. Наше наблюдение: лучше всего работают умеренно подробные промты, похожие на те, которые пишет скорее увлечённый пользователь, чем профессиональный промпт-инженер. YandexVLM как раз умеет подстраиваться под нужный формат. С её помощью мы сгенерировали тексты для каждой картинки, получив датасет Alchemist.
Чтобы убедиться в обобщаемости датасета и метода, мы сделали и выложили файнтюны SD 1.5, SD 2.1, SDXL-base 1.0, SD 3.5 Medium и Large. У всех файнтюнов растёт эстетичность и наполненность генераций, которую мы называем “image complexity”. Подробнее о методике и экспериментах читайте в препринте.
Статью подготовили
CV Time
___
Meta признана экстремистской организацией, а Facebook и Instagram запрещены на территории РФ
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Big Data AI
🧠 Adaptive Deep Reasoning — умная система от Hunyuan, которая сама выбирает, **как много думать*.
Вместо одного фиксированного способа рассуждать — модель динамически переключается между короткой и длинной цепочкой **рассуждений в зависимости от сложности задачи.
Без потери качества. Без избыточных токенов.
🔧 Как это работает:
1️⃣ Supervised Fine-tuning — обучает модель сразу двум режимам: short и long reasoning
2️⃣ Reinforcement Learning (GRPO) — адаптивная стратегия наград:
• Анализирует сложность запроса
• Подбирает подходящую длину рассуждения
• Оптимизирует выбор reasoning-режима
⚙️ Встроенная logit-based switching loss — с первого токена выбирает нужную траекторию (длинную или короткую).
✅ Что получаем:
• Мгновенное переключение между режимами
• Экономия ресурсов без потери точности
• Повышение эффективности reasoning без усложнения архитектуры
🚀 Adaptive Deep Reasoning — это как если бы модель *думала ровно столько, сколько нужно*. Ни больше, ни меньше.
arxiv.org/pdf/2505.20101
@bigdatai
Вместо одного фиксированного способа рассуждать — модель динамически переключается между короткой и длинной цепочкой **рассуждений в зависимости от сложности задачи.
Без потери качества. Без избыточных токенов.
🔧 Как это работает:
1️⃣ Supervised Fine-tuning — обучает модель сразу двум режимам: short и long reasoning
2️⃣ Reinforcement Learning (GRPO) — адаптивная стратегия наград:
• Анализирует сложность запроса
• Подбирает подходящую длину рассуждения
• Оптимизирует выбор reasoning-режима
⚙️ Встроенная logit-based switching loss — с первого токена выбирает нужную траекторию (длинную или короткую).
✅ Что получаем:
• Мгновенное переключение между режимами
• Экономия ресурсов без потери точности
• Повышение эффективности reasoning без усложнения архитектуры
🚀 Adaptive Deep Reasoning — это как если бы модель *думала ровно столько, сколько нужно*. Ни больше, ни меньше.
arxiv.org/pdf/2505.20101
@bigdatai
Forwarded from SecurityLab.ru
🚨 Крах Builder.ai: обещали ИИ, а писали вручную
Стартап Builder.ai восемь лет уверял инвесторов, что создаёт приложения с помощью искусственного интеллекта. На деле — весь код писали обычные разработчики из Индии, а «умный помощник» Natasha был просто маркетингом. Но деньги пришли — Microsoft, SoftBank, $445 млн инвестиций.
Платформа якобы позволяла собирать сложные приложения за считанные часы и без навыков программирования. В реальности — всё вручную, а выручку завышали в четыре раза. Когда выяснилось, что $37 млн заблокированы, компания осталась с $5 млн и подала на банкротство. В США начали расследование, долги Amazon и Microsoft — десятки миллионов.
Builder.ai — хрестоматийный пример «AI-washing»: хайп вместо технологий, яркий фронт и пустая начинка. Но рынок не делает выводов — в 2024 году в ИИ-стартапы вложили $60 млрд. Пузырь подрастает.
#искусственныйинтеллект #стартапы #банкротство
@SecLabNews
Стартап Builder.ai восемь лет уверял инвесторов, что создаёт приложения с помощью искусственного интеллекта. На деле — весь код писали обычные разработчики из Индии, а «умный помощник» Natasha был просто маркетингом. Но деньги пришли — Microsoft, SoftBank, $445 млн инвестиций.
Платформа якобы позволяла собирать сложные приложения за считанные часы и без навыков программирования. В реальности — всё вручную, а выручку завышали в четыре раза. Когда выяснилось, что $37 млн заблокированы, компания осталась с $5 млн и подала на банкротство. В США начали расследование, долги Amazon и Microsoft — десятки миллионов.
Builder.ai — хрестоматийный пример «AI-washing»: хайп вместо технологий, яркий фронт и пустая начинка. Но рынок не делает выводов — в 2024 году в ИИ-стартапы вложили $60 млрд. Пузырь подрастает.
#искусственныйинтеллект #стартапы #банкротство
@SecLabNews
SecurityLab.ru
Как построить “ИИ-сервис мечты” без ИИ, но с тысячей индусов и глянцевым сайтом — опыт Builder.ai
“Наташа всё сделает” — говорили они, а потом Наташу обыскала прокуратура и конфисковала сервера.
⚙️ SWE-rebench: Nebius AI R&D team presents new dataset for SWE tasks.
Researchers built an automated system to collect and validate thousands of real-world tasks from GitHub, designed for training and evaluation of LLMs in software engineering.
Main features of the system:
1️⃣ Automatic data collection: Continuously extracts issue-PR pairs from Python repositories.
2️⃣ LLM-based environment setup: LLM analyzes repositories, creates install instructions, and updates them if errors happen.
3️⃣ Execution-based validation: Each task is tested by automatic setup, test run, and dependency freezing to make it reproducible.
4️⃣ LLM quality annotation: Tasks are labeled for clarity, difficulty, and test correctness to support filtering.
Result:
SWE-rebench dataset: 21,000+ ready-to-use interactive tasks.
Continuous updates: Fresh data is added regularly.
Transparent evaluation: Tasks are used for public SWE-rebench leaderboard.
🚀 SWE-rebench gives researchers and developers real and validated tasks to work with LLMs in SWE field.
Technical report: arXiv
Dataset: SWE-rebench
Researchers built an automated system to collect and validate thousands of real-world tasks from GitHub, designed for training and evaluation of LLMs in software engineering.
Main features of the system:
1️⃣ Automatic data collection: Continuously extracts issue-PR pairs from Python repositories.
2️⃣ LLM-based environment setup: LLM analyzes repositories, creates install instructions, and updates them if errors happen.
3️⃣ Execution-based validation: Each task is tested by automatic setup, test run, and dependency freezing to make it reproducible.
4️⃣ LLM quality annotation: Tasks are labeled for clarity, difficulty, and test correctness to support filtering.
Result:
SWE-rebench dataset: 21,000+ ready-to-use interactive tasks.
Continuous updates: Fresh data is added regularly.
Transparent evaluation: Tasks are used for public SWE-rebench leaderboard.
🚀 SWE-rebench gives researchers and developers real and validated tasks to work with LLMs in SWE field.
Technical report: arXiv
Dataset: SWE-rebench
Forwarded from SecurityLab.ru
Неожиданное признание сооснователя Google на конференции в Майами взорвало профессиональное сообщество. Оказывается, языковые модели действительно показывают более высокое качество ответов под воздействием «угроз физической расправы» — и это касается не только продуктов Google.
Механизм связан с техниками джейлбрейкинга, где агрессивные формулировки заставляют модель обходить встроенные ограничения. Парадокс в том, что попытки взломать защиту одновременно улучшают базовую производительность системы — побочный эффект, который разработчики предпочитают не афишировать.
Признание ставит индустрию перед выбором: либо эксплуатировать обнаруженную особенность для повышения эффективности, либо полностью блокировать подобные воздействия. Пока что побеждает второй подход — OpenAI уже запустила программы поиска уязвимостей в своих моделях.
#ИИ #Уязвимости #Джейлбрейк
@SecLabNews
Please open Telegram to view this post
VIEW IN TELEGRAM
SecurityLab.ru
Угроза вместо «спасибо»: Брин нашёл способ заставить ИИ стараться
Человечество опять ошиблось в воспитании.
Forwarded from Новости IT | Вашу Цифру!
GOOGLE ПОЛНОСТЬЮ СИИХНУЛСЯ
галлюциногены теперь – для всех!
Англосакские газетки обожают писАть т. н. human-touch заметки. A La "как я это cделал" или "исповедь кающегося грешника". Одну такую – рассказ пользователя о чудесах недавнего внедрения Google-фичи общего (генеративного) искусственного иннтелелккта (ОИИ) во все (кажется дюжину), его базовые сервисы в США.
СПОЙЛЕР. Новый ИИ-поиск в Америке стал общедоступным. Но работать с платформой теперь нужно с крайней осторожностью. ОИИ-режим справляется с поиском товаров для онлайн-покупок. Но ему почти недоступны базовые поисковые функциями в сети.
Вот рассказ некого щирого чайно-американца Брайана X. Чена, решившегося на благородный эксперимент – проверить "умный" Google на себе самом.
«На неделе я попросил Google помочь спланировать день рождения дочери, найдя парк в Окленде (Калифорния, США) со столиками для пикника. Тот сгенеририл список парков поблизости, я отправился на разведку в два из них – и обнаружил, что на самом деле столиков там нет.
"Только что был там, - написал я Google. - и столов не увидел". Google признал ошибку и выдал еще один список, в который вновь входил один из парков без столов.
Я повторил эксперимент, попросив Google найти доступную автомойку поблизости. Google указал услугу за $25, но когда я приехал, автомойка стоила $65. А еще я попросил Google найти гастроном, где можно купить экзотическую перцовую пасту. В списке оказался соседний Whole Foods. Стоит ли говорит, что нужного мне товара там тоже не было.
Тестируя новый режим AI Mode похожий на чат-ботов ChatGPT и Gemini, я специально не запрашивал у Google традиционный веб-поиск. AI Mode, который запустят вслед за США по всему миру в ближайшие недели, скоро появится в виде вкладки рядом с результатами Google-поиска. Будьте осторожны!»
Десятилетий веб-поиск включал поиск ключевых слов, таких как "самые надежные автомобили" и пр. Появление AI Mode натужно, но явно намекает, что ОИИ-вскоре полностью перехватит поиск чего-либо в сети.
Теперь с фичей, управляющей чат-ботами с помощью сложных языковых моделей (LLM), угадывающих (именно так, ВЦ!), связь слов друг с другом, вроде как, можно вводить более короткие или гораздо более сложные запросы. И получать, например, диаграмму сравнительных параметров пяти самых надежных седанов года.
В прошлом году Google (вслед за всеми ИИ-активистами, давно предсказывавшими скорого путешествие глобального поисковика на свалку истории), заявила, что ОИИ-режим – новый рубеж поиска. Дополняющий, хотя пока не заменяющий, традиционный.
"Мы честно хотим сделать ИИ-режим лучшим в новом классе точных юзерских запросов", – крутился на днях на пупе главный по поисковым продуктам топ Google Робби Стайн.
ВАШУ ЦИФРУ, восклицает в итоге Чен! Для начала Google. com и все его коллеги-конкуренты делают ОИИ-сервис таким, чтобы он мгновенно стал для юзера абсолютно неизбежен. Meta добавила чат-бота Meta AI в Messenger, WhatsApp и Instagram, а Microsoft разом интегрировала ОИИ в поисковик Bing и свои новейшие компы Surface.
Рекламируемая "уникальность" режима ИИ – в том, что для ответа ОИИ объединяет данные всей "империи" интернет-сервисов Google: самого поисковика, локаций на Google Maps, сведений о недавних запросах и покупках, советы друзей, отзывы профи и т. п.
"Но результат всегда неточен – с попаданиями и промахами", – свидетельствует американский китаец Брайан и призывает использовать ОИИ-режим с крайней осторожностью. Возможно ОИИ даже приблизит скорый и бесславный конец главного мирового поисковика
галлюциногены теперь – для всех!
Англосакские газетки обожают писАть т. н. human-touch заметки. A La "как я это cделал" или "исповедь кающегося грешника". Одну такую – рассказ пользователя о чудесах недавнего внедрения Google-фичи общего (генеративного) искусственного иннтелелккта (ОИИ) во все (кажется дюжину), его базовые сервисы в США.
СПОЙЛЕР. Новый ИИ-поиск в Америке стал общедоступным. Но работать с платформой теперь нужно с крайней осторожностью. ОИИ-режим справляется с поиском товаров для онлайн-покупок. Но ему почти недоступны базовые поисковые функциями в сети.
Вот рассказ некого щирого чайно-американца Брайана X. Чена, решившегося на благородный эксперимент – проверить "умный" Google на себе самом.
«На неделе я попросил Google помочь спланировать день рождения дочери, найдя парк в Окленде (Калифорния, США) со столиками для пикника. Тот сгенеририл список парков поблизости, я отправился на разведку в два из них – и обнаружил, что на самом деле столиков там нет.
"Только что был там, - написал я Google. - и столов не увидел". Google признал ошибку и выдал еще один список, в который вновь входил один из парков без столов.
Я повторил эксперимент, попросив Google найти доступную автомойку поблизости. Google указал услугу за $25, но когда я приехал, автомойка стоила $65. А еще я попросил Google найти гастроном, где можно купить экзотическую перцовую пасту. В списке оказался соседний Whole Foods. Стоит ли говорит, что нужного мне товара там тоже не было.
Тестируя новый режим AI Mode похожий на чат-ботов ChatGPT и Gemini, я специально не запрашивал у Google традиционный веб-поиск. AI Mode, который запустят вслед за США по всему миру в ближайшие недели, скоро появится в виде вкладки рядом с результатами Google-поиска. Будьте осторожны!»
Десятилетий веб-поиск включал поиск ключевых слов, таких как "самые надежные автомобили" и пр. Появление AI Mode натужно, но явно намекает, что ОИИ-вскоре полностью перехватит поиск чего-либо в сети.
Теперь с фичей, управляющей чат-ботами с помощью сложных языковых моделей (LLM), угадывающих (именно так, ВЦ!), связь слов друг с другом, вроде как, можно вводить более короткие или гораздо более сложные запросы. И получать, например, диаграмму сравнительных параметров пяти самых надежных седанов года.
В прошлом году Google (вслед за всеми ИИ-активистами, давно предсказывавшими скорого путешествие глобального поисковика на свалку истории), заявила, что ОИИ-режим – новый рубеж поиска. Дополняющий, хотя пока не заменяющий, традиционный.
"Мы честно хотим сделать ИИ-режим лучшим в новом классе точных юзерских запросов", – крутился на днях на пупе главный по поисковым продуктам топ Google Робби Стайн.
ВАШУ ЦИФРУ, восклицает в итоге Чен! Для начала Google. com и все его коллеги-конкуренты делают ОИИ-сервис таким, чтобы он мгновенно стал для юзера абсолютно неизбежен. Meta добавила чат-бота Meta AI в Messenger, WhatsApp и Instagram, а Microsoft разом интегрировала ОИИ в поисковик Bing и свои новейшие компы Surface.
Рекламируемая "уникальность" режима ИИ – в том, что для ответа ОИИ объединяет данные всей "империи" интернет-сервисов Google: самого поисковика, локаций на Google Maps, сведений о недавних запросах и покупках, советы друзей, отзывы профи и т. п.
"Но результат всегда неточен – с попаданиями и промахами", – свидетельствует американский китаец Брайан и призывает использовать ОИИ-режим с крайней осторожностью. Возможно ОИИ даже приблизит скорый и бесславный конец главного мирового поисковика
Forwarded from AI.Insaf
Вчера сходил на Датафест в Avito. Ожидаемо, основной фокус был на LLM и рекомендациях
По докладам:
1. Самый сильный доклад - про post-training LLM и библиотеку torchtune (реализованы SFT, DPO, PPO и т. д. без обёрток Hugging Face), в которую сам докладчик контрибьютит. Берём Llama (вроде бы 7B, batch_size=2) с QLoRA`й - обучение займёт 358 минут с пиком потребления памяти 7 ГБ. Добавим Compile, packing батчей, FlexAttention — и время обучения уменьшится до 36 минут, но какой ценой: потребление памяти вырастет до 40 ГБ (x6),. Можно ещё добавить Context Parallel и улететь в космос с пиками потребления до 70 ГБ.
2. Несколько докладов по продуктовому применению LLM в Avito и Т-Банке (например разметка звонков, чатов на факт сделки и т. д.). Общий подход - максимально очистить выборку и согласовать инструкцию к разметке, добившись консистентности разметки, т. е. чтобы разные люди размечали одинаково. Далее - максимально понятный LLM workflow, так чтобы задача решалась итерационно; если контекст сильно растёт, добавляем RAG. При этом в одном из кейсов Avito для RAG зашла комбинация BM25, LLM, BERT и реранкера из RoBERTa. PS Агентов еще не завезли
3. Дообучение LLM в Avito. Дообучали (DPO) лёгкие 7B модели (Qwen) - получили небольшие приросты метрик, которые нивелируются релизами новых опенсорсных моделей. Ключевой эффект - в дообучении своего токенизатора с фокусом на русский язык (+31% к скорости инференса).
4. Рекомендации на главной Avito: ретривал на трансформерах с позиционными эмбедингами товаров (кликов и просмотров) + ranking на CatBoost. Вся эта история даёт 50% просмотров и 30% кликов по объявлениям. Из интересного - добавление блендера, чтобы в бесконечной ленте были товары из разных категорий
5. Большая дискуссия про важность ML-соревнований. В конце спикеры сошлись на том, что если результат соревнования/хакатона определяется местом на лидерборде, то презентации не стоит учитывать (важен результат, а не то, как он достигнут). Эх, не зря ругают звездолёты кагглеров
6. Инсайды с обсуждений вне докладов - chatgpt любит некоторые буквы заменять на редкие аналоги, которые выглядят так же, чтобы потом можно было бы определить что текст сгенерирован. Плюс наличие нового абзаца с двух пробелов или использование длинного тире - текст сгенерирован, тк такое человек не использует
P.S. На квизе вспомнили про Bimorph - вот так становятся легендой. Пик одс в 2019г и я там был, сейчас нашел статью на хабре, но те обсуждения под 1к сообщение в слаке уже не найти 🫡
P.S2 На фото - вид с веранды офиса, красивое
По докладам:
1. Самый сильный доклад - про post-training LLM и библиотеку torchtune (реализованы SFT, DPO, PPO и т. д. без обёрток Hugging Face), в которую сам докладчик контрибьютит. Берём Llama (вроде бы 7B, batch_size=2) с QLoRA`й - обучение займёт 358 минут с пиком потребления памяти 7 ГБ. Добавим Compile, packing батчей, FlexAttention — и время обучения уменьшится до 36 минут, но какой ценой: потребление памяти вырастет до 40 ГБ (x6),. Можно ещё добавить Context Parallel и улететь в космос с пиками потребления до 70 ГБ.
2. Несколько докладов по продуктовому применению LLM в Avito и Т-Банке (например разметка звонков, чатов на факт сделки и т. д.). Общий подход - максимально очистить выборку и согласовать инструкцию к разметке, добившись консистентности разметки, т. е. чтобы разные люди размечали одинаково. Далее - максимально понятный LLM workflow, так чтобы задача решалась итерационно; если контекст сильно растёт, добавляем RAG. При этом в одном из кейсов Avito для RAG зашла комбинация BM25, LLM, BERT и реранкера из RoBERTa. PS Агентов еще не завезли
3. Дообучение LLM в Avito. Дообучали (DPO) лёгкие 7B модели (Qwen) - получили небольшие приросты метрик, которые нивелируются релизами новых опенсорсных моделей. Ключевой эффект - в дообучении своего токенизатора с фокусом на русский язык (+31% к скорости инференса).
4. Рекомендации на главной Avito: ретривал на трансформерах с позиционными эмбедингами товаров (кликов и просмотров) + ranking на CatBoost. Вся эта история даёт 50% просмотров и 30% кликов по объявлениям. Из интересного - добавление блендера, чтобы в бесконечной ленте были товары из разных категорий
5. Большая дискуссия про важность ML-соревнований. В конце спикеры сошлись на том, что если результат соревнования/хакатона определяется местом на лидерборде, то презентации не стоит учитывать (важен результат, а не то, как он достигнут). Эх, не зря ругают звездолёты кагглеров
6. Инсайды с обсуждений вне докладов - chatgpt любит некоторые буквы заменять на редкие аналоги, которые выглядят так же, чтобы потом можно было бы определить что текст сгенерирован. Плюс наличие нового абзаца с двух пробелов или использование длинного тире - текст сгенерирован, тк такое человек не использует
P.S. На квизе вспомнили про Bimorph - вот так становятся легендой. Пик одс в 2019г и я там был, сейчас нашел статью на хабре, но те обсуждения под 1к сообщение в слаке уже не найти 🫡
P.S2 На фото - вид с веранды офиса, красивое
Forwarded from Анализ данных (Data analysis)
MCP (Model Context Protocol) меняет то, как ИИ-модели и агенты взаимодействуют с инструментами.
1. Agentset MCP
🔗 https://github.com/agentset-ai/mcp-server
Быстрое создание интеллектуальных приложений на основе документов (RAG) с open-source платформой Agentset.
2. GitHub MCP Server
🔗 https://github.com/github/github-mcp-server
Интеграция с API GitHub — можно строить ИИ-инструменты, работающие с экосистемой GitHub.
3. arXiv MCP
🔗 https://github.com/andybrandt/mcp-simple-arxiv
Работа с научными статьями arXiv: поиск, метаданные, аннотации, ссылки — всё через MCP.
4. MCP Run Python
🔗 https://github.com/pydantic/pydantic-ai/tree/main/mcp-run-python
Запуск Python-кода в песочнице через Pyodide (Deno). Полная изоляция от ОС.
5. Safe Local Python Executor
🔗 https://github.com/maxim-saplin/mcp_safe_local_python_executor
Безопасный локальный запуск Python-кода, сгенерированного LLM, через LocalPythonExecutor (от smolagents).
6. Cursor MCP Installer
🔗 https://github.com/matthewdcage/cursor-mcp-installer
Автоматическое добавление MCP-серверов в редактор Cursor — удобно для разработчиков.
7. Basic Memory
🔗 https://memory.basicmachines.co/docs/introduction
Система управления знаниями: создаёт устойчивый семантический граф из диалогов ИИ-агентов.
8. Filesystem MCP Server
🔗 https://github.com/modelcontextprotocol/servers/tree/HEAD/src/filesystem
Чтение, запись, поиск файлов, создание, удаление и перемещение директорий — всё через MCP.
9. Notion MCP Server
🔗 https://github.com/makenotion/notion-mcp-server
Позволяет моделям управлять вашим рабочим пространством в Notion: поиск, чтение, создание и обновление страниц и баз.
10. Markdownify MCP Server
🔗 https://github.com/zcaceres/markdownify-mcp
Конвертирует PDF, изображения, аудио и веб-страницы в Markdown.
11. Fetch MCP Server
🔗 https://github.com/modelcontextprotocol/servers/tree/main/src/fetch
Позволяет LLM извлекать данные с веб-страниц и автоматически преобразовывать HTML в Markdown.
12. Mobile Next MCP Server
🔗 https://github.com/mobile-next/mobile-mcp
Взаимодействие с iOS/Android-приложениями: распознавание UI по скриншотам, автоматизация кликов.
13. MCP Installer
🔗 https://github.com/anaisbetts/mcp-installer
Шутливо, но по делу: «MCP для установки MCP». Модель сама ставит MCP-серверы из npm и PyPi по вашему запросу.
🧠 Вывод:
MCP-серверы — это мост между LLM и реальными действиями: код, браузер, мобильные приложения, знания, GitHub, файлы.
Их можно комбинировать в цепочки, расширять ассистентов, строить автономные агенты.
@data_analysis_ml
#ml #ai #MCP
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from LLM Arena
Китайский DeepSeek тихо представил обновленную версию своей революционной модели искусственного интеллекта - DeepSeek R1-0528.
Что нового в обновлении?
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from CV Time
Improving the Diffusability of Autoencoders
Сегодня разбираем статью, в которой обсуждается то, что авторы называют diffusability латентного пространства: насколько легко диффузионной модели учиться на латентах автоэнкодера.
В латентных диффузионных моделях (например, Stable Diffusion) генерация происходит не в пикселях, а в сжатом представлении. Это ускоряет обучение, но вводит зависимость от свойств автоэнкодера. Обычно смотрят только на качество реконструкции: насколько хорошо декодер восстанавливает изображение. Но есть вторая характеристика — diffusability, и именно её авторы рассматривают в этой работе.
Что такое diffusability и почему это важно
Если латенты имеют сложное распределение или содержат неинформативные шумовые компоненты, диффузии приходится подстраиваться под это распределение — обучаться дольше и потенциально упираться в потолок качества. Поэтому автоэнкодер задаёт не только качество реконструкции, но и удобство обучения вместе с последующей генерацией.
Авторы смотрят на латенты от обычных автоэнкодеров и замечают, что они визуально шумные: в них много высокочастотных деталей, особенно в фоне. Чтобы разобраться, применяют дискретное косинусное преобразование (DCT), как в JPEG. Разбивают картинку или латент на блоки 8×8, считают DCT по каждому из них, усредняют спектры и строят частотный профиль.
Выясняется, что латенты содержат больше высокочастотных компонентов, чем изображения, и это особенно заметно при увеличении числа каналов. Даже если латент визуально похож на картинку, его частотный профиль сильно отличается. А если обнулить высокие частоты и попробовать восстановить изображение, латент теряет качество гораздо сильнее, чем обычное изображение — там такие потери почти незаметны. Это говорит о том, что латенты слишком зависят от высокочастотной части и не обладают масштабной эквивариантностью.
Тогда авторы добавляют к лоссу автоэнкодера простую компоненту: берут исходное изображение и соответствующий латент, уменьшают их разрешение (в 2 или 4 раза), затем реконструируют картинку из сжатого латента и считают дополнительный лосс между даунскейленным изображением и полученной реконструкцией.
Таким образом они обеспечивают соблюдения свойства масштабной инвариантности (потому что лосс буквально это и делает), что, в свою очередь, регуляризует латенты, убирая из них лишние высокие частоты.
Результат — латенты становятся менее шумными, частотные профили ближе к тем, что у изображений. И, что важно, визуально структура латента сохраняется. Согласно метрикам, качество реконструкции почти не падает.
Эксперименты
Метод протестировали на ImageNet-1K (изображения) и Kinetics-700 (видео). Сравнивали обучение диффузионной модели на обычных и исправленных латентах.
В статье diffusability измеряют через скорость обучения: берут автоэнкодер, обучают на нём диффузионную модель и смотрят, насколько быстро растёт метрика качества (например, FID для изображений и FVD для видео). Сравнивались базовые модели и те же архитектуры, но обученные на автоэнкодерах с исходным и улучшенным diffusability. Оказалось, что последние учатся быстрее и дают лучшее финальное качество.
Результаты:
— генерация изображений: FID улучшился на 19%;
— генерация видео: FVD улучшился на 44%;
— модели обучаются быстрее;
— PSNR немного растёт (за счёт блюра), но визуально картинки выглядят нормально.
Визуализация того, как выглядят латенты до и после (см. картинку), взята из другой работы, посвященной этой же теме: шум действительно уходит, но структура остаётся. Частотные кривые тоже приближаются к тем, что у изображений.
В целом статья посвящена довольно локальной проблеме, но в ней есть понятная идея и измеримый эффект.
Разбор подготовил❣ Сергей Кастрюлин
CV Time
Сегодня разбираем статью, в которой обсуждается то, что авторы называют diffusability латентного пространства: насколько легко диффузионной модели учиться на латентах автоэнкодера.
В латентных диффузионных моделях (например, Stable Diffusion) генерация происходит не в пикселях, а в сжатом представлении. Это ускоряет обучение, но вводит зависимость от свойств автоэнкодера. Обычно смотрят только на качество реконструкции: насколько хорошо декодер восстанавливает изображение. Но есть вторая характеристика — diffusability, и именно её авторы рассматривают в этой работе.
Что такое diffusability и почему это важно
Если латенты имеют сложное распределение или содержат неинформативные шумовые компоненты, диффузии приходится подстраиваться под это распределение — обучаться дольше и потенциально упираться в потолок качества. Поэтому автоэнкодер задаёт не только качество реконструкции, но и удобство обучения вместе с последующей генерацией.
Авторы смотрят на латенты от обычных автоэнкодеров и замечают, что они визуально шумные: в них много высокочастотных деталей, особенно в фоне. Чтобы разобраться, применяют дискретное косинусное преобразование (DCT), как в JPEG. Разбивают картинку или латент на блоки 8×8, считают DCT по каждому из них, усредняют спектры и строят частотный профиль.
Выясняется, что латенты содержат больше высокочастотных компонентов, чем изображения, и это особенно заметно при увеличении числа каналов. Даже если латент визуально похож на картинку, его частотный профиль сильно отличается. А если обнулить высокие частоты и попробовать восстановить изображение, латент теряет качество гораздо сильнее, чем обычное изображение — там такие потери почти незаметны. Это говорит о том, что латенты слишком зависят от высокочастотной части и не обладают масштабной эквивариантностью.
Тогда авторы добавляют к лоссу автоэнкодера простую компоненту: берут исходное изображение и соответствующий латент, уменьшают их разрешение (в 2 или 4 раза), затем реконструируют картинку из сжатого латента и считают дополнительный лосс между даунскейленным изображением и полученной реконструкцией.
Таким образом они обеспечивают соблюдения свойства масштабной инвариантности (потому что лосс буквально это и делает), что, в свою очередь, регуляризует латенты, убирая из них лишние высокие частоты.
Результат — латенты становятся менее шумными, частотные профили ближе к тем, что у изображений. И, что важно, визуально структура латента сохраняется. Согласно метрикам, качество реконструкции почти не падает.
Эксперименты
Метод протестировали на ImageNet-1K (изображения) и Kinetics-700 (видео). Сравнивали обучение диффузионной модели на обычных и исправленных латентах.
В статье diffusability измеряют через скорость обучения: берут автоэнкодер, обучают на нём диффузионную модель и смотрят, насколько быстро растёт метрика качества (например, FID для изображений и FVD для видео). Сравнивались базовые модели и те же архитектуры, но обученные на автоэнкодерах с исходным и улучшенным diffusability. Оказалось, что последние учатся быстрее и дают лучшее финальное качество.
Результаты:
— генерация изображений: FID улучшился на 19%;
— генерация видео: FVD улучшился на 44%;
— модели обучаются быстрее;
— PSNR немного растёт (за счёт блюра), но визуально картинки выглядят нормально.
Визуализация того, как выглядят латенты до и после (см. картинку), взята из другой работы, посвященной этой же теме: шум действительно уходит, но структура остаётся. Частотные кривые тоже приближаются к тем, что у изображений.
В целом статья посвящена довольно локальной проблеме, но в ней есть понятная идея и измеримый эффект.
Разбор подготовил
CV Time
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Anton Alekseev | Инфраструктура для AI и ML
Тензерирование или быстрая загрузка весов моделей в GPU
Раскроем подробнее что такое Тензерирование - это способ сериализации и десериализации весов модели, что позволяет сократить время загрузки весов в GPU. Также позволяет загружать веса в S3, добавить шифрование, уменьшить время старта инференса и нагрузку на CPU.
Истоки - Проект CoreWeave
Как добавили в VLLM
Как использовать в VLLM
Пример скрипта сериализации/десериализации. В комментах подробные инструкции как пользоваться.
Результаты тестирования
Замерял время загрузки весов из local path в GPU во время старта VLLM
Qwen3-8b
A100 40gb x1
веса размером 15.2683 GiB
tensorize vs default
5.435905 sec vs 34.538318 sec
пример конфига для vllm
Разница в 7 раз
Qwen3-32b
A100 40gb x2 при tensor-parallel-size 2
Веса размером 30.5855 GiB
tensorize vs default
118.667568 sec vs 307.285575 sec
пример конфига для vllm
Разница в 3 раза
Загружаются веса действительно в разы быстрее. У кого стоит задача уменьшить время загрузки весов в GPU - рекомендую присмотреться к этому способу!
Раскроем подробнее что такое Тензерирование - это способ сериализации и десериализации весов модели, что позволяет сократить время загрузки весов в GPU. Также позволяет загружать веса в S3, добавить шифрование, уменьшить время старта инференса и нагрузку на CPU.
Истоки - Проект CoreWeave
Как добавили в VLLM
Как использовать в VLLM
Пример скрипта сериализации/десериализации. В комментах подробные инструкции как пользоваться.
Результаты тестирования
Замерял время загрузки весов из local path в GPU во время старта VLLM
Qwen3-8b
A100 40gb x1
веса размером 15.2683 GiB
tensorize vs default
5.435905 sec vs 34.538318 sec
пример конфига для vllm
{
"model":"Qwen/Qwen3-8B",
"load_format": "tensorizer",
"model_loader_extra_config": {"tensorizer_uri": "/root/models/ser-qwen-from-local/vllm/qwen_hf/v1/model.tensors"}
}
Разница в 7 раз
Qwen3-32b
A100 40gb x2 при tensor-parallel-size 2
Веса размером 30.5855 GiB
tensorize vs default
118.667568 sec vs 307.285575 sec
пример конфига для vllm
{
"model":"Qwen/Qwen3-32B",
"load_format": "tensorizer",
"model_loader_extra_config": {
"tensorizer_uri": "/root/models/ser-qwen-32-from-local/vllm/qwen_32/v1/model-rank-%03d.tensors"
},
"tensor_parallel_size": 2,
"disable_log_requests": "true",
"gpu_memory_utilization": 0.9,
"max_model_len": 5024
}
Разница в 3 раза
Загружаются веса действительно в разы быстрее. У кого стоит задача уменьшить время загрузки весов в GPU - рекомендую присмотреться к этому способу!
HTML Embed Code: