Warning: mkdir(): No space left on device in /var/www/hottg/post.php on line 59

Warning: file_put_contents(aCache/aDaily/2025-07-20/post/neural/-9937-9938-9939-9940-9937-): Failed to open stream: No such file or directory in /var/www/hottg/post.php on line 72
📌LADDER: как научить LLM решать сложные задачи без учителя. @Neural Networks | Нейронные сети
TG Telegram Group & Channel
Neural Networks | Нейронные сети | United States America (US)
Create: Update:

📌LADDER: как научить LLM решать сложные задачи без учителя.

Tufa Labs опубликовала пейпер фреймворка LADDER, который дает возможность языковым моделям самостоятельно улучшать навыки решения сложных задач.

Технология имитирует человеческое обучение: ИИ разбивает проблемы на простые шаги, создаёт «учебный план» из упрощённых вариантов и постепенно наращивает мастерство решения. Например, модель Llama 3.2 с 3 млрд. параметров, изначально решавшая лишь 1% интегралов студенческого уровня, после обучения по методу LADDER достигла 82% точности.

Самые интересные результаты LADDER показал на тесте MIT Integration Bee — ежегодном соревновании по интегральному исчислению. На нем модель Qwen2.5 (7B), доработанная с помощью LADDER, набрала 73%, обойдя GPT-4o (42%) и большинство студентов, а с применением TTRL — результат вырос до 90%. Это превзошло даже показатели OpenAI o1, хотя последний не использовал числовую проверку решений.

TTRL (Test-Time Reinforcement Learning) — это метод «микрообучения», который позволяет языковым моделям адаптироваться к сложным задачам прямо во время их решения.


В основе LADDER - принцип рекурсивной декомпозиции: модель разбивает непосильную задачу на цепочку постепенно усложняющихся шагов, создавая собственную «учебную программу». Столкнувшись со сложным интегралом, ИИ генерирует его упрощённые версии — снижает степень полинома, убирает дробные коэффициенты или заменяет составные функции базовыми. Каждый такой вариант становится ступенью, ведущей к решению целевой задачи.

Работа фреймворка делится на три этапа:

Первый — генерация «дерева вариантов»: модель создаёт десятки модификаций задачи, ранжируя их по сложности.

Второй — верификация: каждое решение проверяется численными методами (например, сравнение значений интеграла в ключевых точках).

Третий — обучение с подкреплением: система поощряет успешные стратегии, используя баллы за правильные ответы и штрафуя за ошибки.

Дополняющее применение TTRL позволяет проводить «экспресс-тренировки» прямо во время теста: ИИ генерирует варианты конкретной задачи и адаптируется к ней за секунды, не требуя вмешательства человека.


🟡Arxiv

@ai_machinelearning_big_data

#AI #ML #RL #LADDER #Paper

Forwarded from Machinelearning
📌LADDER: как научить LLM решать сложные задачи без учителя.

Tufa Labs опубликовала пейпер фреймворка LADDER, который дает возможность языковым моделям самостоятельно улучшать навыки решения сложных задач.

Технология имитирует человеческое обучение: ИИ разбивает проблемы на простые шаги, создаёт «учебный план» из упрощённых вариантов и постепенно наращивает мастерство решения. Например, модель Llama 3.2 с 3 млрд. параметров, изначально решавшая лишь 1% интегралов студенческого уровня, после обучения по методу LADDER достигла 82% точности.

Самые интересные результаты LADDER показал на тесте MIT Integration Bee — ежегодном соревновании по интегральному исчислению. На нем модель Qwen2.5 (7B), доработанная с помощью LADDER, набрала 73%, обойдя GPT-4o (42%) и большинство студентов, а с применением TTRL — результат вырос до 90%. Это превзошло даже показатели OpenAI o1, хотя последний не использовал числовую проверку решений.

TTRL (Test-Time Reinforcement Learning) — это метод «микрообучения», который позволяет языковым моделям адаптироваться к сложным задачам прямо во время их решения.


В основе LADDER - принцип рекурсивной декомпозиции: модель разбивает непосильную задачу на цепочку постепенно усложняющихся шагов, создавая собственную «учебную программу». Столкнувшись со сложным интегралом, ИИ генерирует его упрощённые версии — снижает степень полинома, убирает дробные коэффициенты или заменяет составные функции базовыми. Каждый такой вариант становится ступенью, ведущей к решению целевой задачи.

Работа фреймворка делится на три этапа:

Первый — генерация «дерева вариантов»: модель создаёт десятки модификаций задачи, ранжируя их по сложности.

Второй — верификация: каждое решение проверяется численными методами (например, сравнение значений интеграла в ключевых точках).

Третий — обучение с подкреплением: система поощряет успешные стратегии, используя баллы за правильные ответы и штрафуя за ошибки.

Дополняющее применение TTRL позволяет проводить «экспресс-тренировки» прямо во время теста: ИИ генерирует варианты конкретной задачи и адаптируется к ней за секунды, не требуя вмешательства человека.


🟡Arxiv

@ai_machinelearning_big_data

#AI #ML #RL #LADDER #Paper
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM


>>Click here to continue<<

Neural Networks | Нейронные сети









Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)


Warning: Undefined array key 3 in /var/www/hottg/function.php on line 115

Fatal error: Uncaught mysqli_sql_exception: Can't create/write to file '/tmp/#sql-temptable-a06e-5e7eff-30cc.MAI' (Errcode: 28 "No space left on device") in /var/www/hottg/function.php:216 Stack trace: #0 /var/www/hottg/function.php(216): mysqli_query() #1 /var/www/hottg/function.php(115): select() #2 /var/www/hottg/post.php(351): daCache() #3 /var/www/hottg/route.php(63): include_once('...') #4 {main} thrown in /var/www/hottg/function.php on line 216