TG Telegram Group Link
Channel: Machine learning Interview
Back to Bottom
🖥 Что под капотом у PyTorch

Подробный блог-пост о том, как на самом деле работает внутренняя часть PyTorch.

📌 Читать
📌Видео объяснения базы по тензорам

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
24👍7🔥5👎1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ СuML от NVIDIA: Scikit-learn на скорости GPU – без единой строчки нового кода!

Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!

Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU! 🔥

Как это работает?

Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова cuml.patch.apply() вы "патчите" установленный у вас scikit-learn прямо в памяти.

Теперь, когда вы вызываете, например, KNeighborsClassifier или PCA из sklearn:

▶️Патч проверяет, есть ли у вас GPU NVIDIA.
▶️Проверяет, есть ли в cuml быстрая GPU-версия этого алгоритма.
▶️Если да – запускает ускоренную версию на GPU! 🏎️
▶️Если нет (нет GPU или алгоритм не поддерживается) – спокойно запускает обычную CPU-версию scikit-learn.

Ключевые преимущества:

✔️ Нулевые изменения кода: Ваш scikit-learn код остается прежним. Добавляете только 2 строчки:
import cuml.patch и cuml.patch.apply().
✔️ Колоссальное ускорение: Получите прирост производительности на порядки для поддерживаемых алгоритмов (KNN, PCA, линейные модели, Random Forest (инференс), UMAP, DBSCAN, KMeans и др.) за счет мощи GPU.
✔️Автоматическое переключение между GPU и CPU. Ваш скрипт будет работать в любом случае.

Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.

👇 Как использовать:

Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):


python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend


Добавьте в начало скрипта:


import cuml.patch
cuml.patch.apply()


Используйте scikit-learn как обычно!

Попробуйте и почувствуйте разницу! 😉

Блог-пост
Colab
Github
Ускоряем Pandas

@ai_machinelearning_big_data


#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
19👍7🔥7
🖥 OpenAI открывает бесплатное обучение по работе с нейросетями

OpenAI запустила "Академию OpenAI", которая претендует на роль главного учебника по ИИ. Платформа поможет освоить нейросети, понять их возможности и научиться эффективно использовать ChatGPT и Sora в повседневной жизни и работе.

Обширная база обучающих материалов доступна на отдельном сайте.
Живые трансляции и офлайн-мероприятия помогут глубже разобраться в технологиях.
Бесплатный доступ — OpenAI стремится расширить аудиторию, а не ограничивать её ценником.

📌Начать обучение
📌 Блог
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥154👍3🗿2
🖥 Подготовка к собеседованию на Python разработчика: нашел сборник самых частых вопросов с ответами и примерами кода.

Это квинтэссенция примеров кода и паттернов, охватывающая 99% возможных вопросов на собеседовании.

Шпаргалка объемная, время чтения - 96 минут.

На русском языке.

🟢Github
🟢Видео
🟢Полный список

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥18👍83
🔥 Пошаговый гайд создания системы автоматического распознавания речи с помощью PyTorch и Hugging Face

С эти гайдом вы сможете:
- Загружать и обрабатывать речь данные
- Настраивать предварительно обученную модель Wav2Vec2
- Оценивать производительность модели с помощью коэффициента ошибок слов (WER)
- Развертывать модель для перевода речи в текст в режиме реального времени

🔗 Читать
👍16🔥63
📹 Топ-15 технических YouTube-каналов для изучения ИИ с нуля:

1) Andrej Karpathy — сочетание общего и технического контента, плейлист "Zero to Hero" обязателен к просмотру

2) Uproger — доступные уроки по программированию и ИИ, идеально для начинающих и тех, кто хочет углубить свои знания.

3) Umar Jamil — технический блог, где автор реализует методы ML и LLM с нуля

4) Simon Oz — технические видео по низкоуровневому машинному обучению

5) Tunadorable — отличные обзоры научных статей, реализация

6) GPU Mode — технические интервью и разборы всего, что связано с GPU

7) AI Jason — эксперименты с ИИ, дизайн ПО и новые модели, с понятным и полным разбором.

8) Ferdinand Mom — всё о распределённом обучении и выводах

9) Welch Labs — уникальный глубокий взгляд на комплексность алгоритмов машинного обучения.

10) Artem Kirsanov — нейронаука и машинное обучение с необычного авторского взгляда + отличная визуализация контента.

11) David Ondrej — новые модели, создание приложений с ИИ, практично для разработчиков https://t.co/BEOr0MgHag @DavidOndrej1

12) 3Blue1Brown
Потрясающие визуализации, которые делают абстрактные математические концепции понятными и интуитивными.

13) Lex Fridman
Глубокие беседы с лидерами индустрии ИИ, позволяющие получить широкий взгляд на современные тенденции.

14) Machine Learning Street Talk
Технические погружения и обсуждения с ведущими исследователями в области ИИ и машинного обучения.
Ссылка:

15) StatQuest with Joshua Starmer PhD
Доступные и понятные объяснения основ машинного обучения и статистики для начинающих.

Этот список для технической аудитории. Очень сложно выбрать всего 15 каналов, ведь есть множество других, создающих отличный контент.

Если знаете ещё каналы, дайте пишите в комментариях!

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥31👍164
⚡️Анализируем продажи на маркетплейсах с помощью Python

С каждым днем все больше бизнесов выходят на маркетплейсы, а значит еще более ценными становятся аналитики, которые умеют с ними работать. Хотите научиться использовать Python для анализа продаж и создания эффективных стратегий?

Андрон Алексанян - CEO Simulative в прямом эфире проанализирует продажи на маркетплейсах с помощью Python. Никаких первоапрельских розыгрышей, только полезные знания! 🧡

Что будем делать:

🟠Напишем скрипт на Python, который каждый час собирает статистику о ранжировании карточки на WB по ключевым запросам;
🟠Построим наглядные визуализации для отслеживания динамики ранжирования;
🟠Обсудим, как упаковать этот проект в идеальное портфолио.

🕗 Встречаемся 01 апреля 18:30 по МСК

😶Зарегистрироваться на бесплатный вебинар
Please open Telegram to view this post
VIEW IN TELEGRAM
🤡63👍3🥰2
⚡️ Проект llama-3.2-from-scratch, созданный пользователем rasbt (Себастьян Рашка), представляет собой реализацию модели Llama 3.2 на языке PyTorch с нуля.

Цель проекта — предоставить понятный и минималистичный код для изучения и исследования архитектуры больших языковых моделей (LLM).​

Основные особенности проекта:

- Простота и доступность кода: Реализация оптимизирована для читаемости, что делает её подходящей для образовательных целей и исследований.​

- Минимальные зависимости: Для работы требуются только библиотеки torch, tiktoken и blobfile, что упрощает установку и использование.​

- Предоставление предобученных весов: В репозитории доступны веса моделей, конвертированные из официальных весов, предоставленных компанией Meta. Это позволяет пользователям сразу приступить к экспериментам без необходимости обучать модели с нуля.​

- Гибкость в выборе моделей: Поддерживаются различные версии моделей Llama 3.2, включая базовые и инструкционные варианты с 1 и 3 миллиардами параметров.​

- Примеры использования: Включены примеры кода для загрузки моделей, настройки токенизатора и генерации текста, что облегчает начало работы с проектом.​

Важно отметить, что предоставленные веса моделей были конвертированы из официальных весов Meta. Для получения оригинальных весов и информации о лицензии рекомендуется обратиться к официальным репозиториям Meta на Hugging Face.​

В целом, llama-3.2-from-scratch — это ценный ресурс для разработчиков и исследователей, желающих глубже понять внутреннее устройство современных языковых моделей и экспериментировать с их архитектурой.

https://huggingface.co/rasbt/llama-3.2-from-scratch

@machinelearning_interview
👍20🔥76
Forwarded from Machinelearning
✔️ Qwen3, по слухам, будет представлена на следующей неделе.

Китайский медиапортал Sina.com.cn сообщил, что в его распоряжении есть информация, указывающая на то, что Alibaba Group планирует выпуск новой модели Qwen3 следующей неделе (7- 11 апреля). По словам экспертов медиаресурса Huxiu.com , это будет самый важный модельный продукт Alibaba в первой половине 2025 года, после выпуска DeepSeek-R1 команда Alibaba Cloud Basic Model Team еще больше сместила вектор разработки в сторону способности модели к рассуждениям.

Sina Technology обратилась за подтверждением к Alibaba Cloud, но на момент публикации официального ответа не последовало.
sina.com.cn

✔️ Microsoft закрывает ИИ-лабораторию в Шанхае.

Microsoft свернула работу своей лаборатории IoT и ИИ в технологическом кластере Чжанцзян (Шанхай), следуя стратегии сокращения присутствия в Китае. Объект, открытый в 2019 году для поддержки местных стартапов уже опустел: логотип демонтирован, оборудование вывезено. За 5 лет лаборатория помогла реализовать 258 проектов, привлекла 9,4 млрд юаней инвестиций и обучила около 10 тыс. специалистов.

Решение закрыть центр стало частью плана ухода Microsoft с китайского рынка. В 2023 году компания предложила сотрудникам, работающим над ИИ, переехать за рубеж, а также закрыла все розничные магазины в стране. По словам президента Microsoft Брэда Смита, на Китай приходится всего 1,5% глобальной выручки.
scmp.com

✔️ Руководитель отдела исследований FAIR Жоэль Пино покинет свой пост в мае.

Жоэль Пино, вице-президент по исследованиям в области ИИ компании Марка Цукерберга и глава группы FAIR, объявила о своих планах покинуть компанию в мае после почти 8 лет работы. Пино возглавляла FAIR с начала 2023 года и курировала разработку моделей Llama.

Ожидается, что уход Пино приведет к появлению вакансии высокого уровня в подразделении ИИ компании, но непосредственный преемник пока не назван.
wsj.com

✔️ Все SOTA-модели провалились на матолимпиаде-2025.

Тесты топовых LLM, проведенные matharena.ai на сложных задачах математической олимпиады США (USAMO-2025) показали печальные результаты. Модели решали 6 доказательных задач — каждая оценивалась в 7 баллов, высший балл - 42. Лидеры теста (DeepSeek-R1 и Gemini-2.0-flash-thinking) набрали меньше 5%, что ставит под сомнение их способность к глубокому математическому анализу.

Несмотря на провал, часть специалистов уверена — прогресс LLM в математике всё же есть, и он не сводится к «загрязнению» данных. Исследование, в рамка которого проводилось тестирование - «Proof or Bluff? Evaluating LLMs on 2025 USA Math Olympiad» подытоживает: LLM, даже лучшим, пока далеко до уровня человека в соревновательных дисциплинах.
matharena.ai

✔️ OpenAI представила новый голос ChatGPT "Shade".

OpenAI добавила новую голосовую опцию для ChatGPT под кодовым названием "Shade". Этот голос, описанный как "Поговори с понедельником", имеет характерную визуализацию "угрюмого черного" в расширенном голосовом режиме.

Новая опция доступна в приложении для iOS, и пользователи отмечают его уникальное звучание и эстетику "тяжелого понедельника".
OpenAI в X (ex-Twitter)

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
14👍5🥰2
🕊️ Hummingbird — инструмент от Microsoft, позволяющий преобразовывать классические ML алгоритмы в тензорные вычисления.

📝 Как это работает?
— Суть в том, что вместо привычного последовательного выполнения условий в деревьях Hummingbird использует матричные операции, что открывает доступ к GPU-ускорению и оптимизациям нейросетевых движков. При этом API остаётся знакомым любому, кто работал с scikit-learn — можно просто подменить модель без переписывания кода инференса.

Пока проект поддерживает не все алгоритмы, но уже охватывает ключевые сценарии ⚙️

🤖 GitHub

@machinelearning_interview
👍18🔥42
🦾 Курс искусственный интеллект (ML) в медицине

Научитесь создавать качественные мультимодальные медицинские датасеты и осуществлять техническую поддержку разметки данных

Ориентирйтесь в зоопарке современных подходов к машинному обучению и умейте анализировать результаты машинного обучения

Выпускной проект: Разработка и внедрение модели от появления данных и размеченных датасетов до машинного обучения, анализа результатов и выбора моделей. 

👇 Проверить свой уровень и пройти тест на курс: 
https://otus.pw/eSBA/?erid=2W5zFJho1HJ

#реклама
О рекламодателе
5🤡1
HTML Embed Code:
2025/07/08 15:36:37
Back to Top