TG Telegram Group & Channel
Machine learning Interview | United States America (US)
Create: Update:

🚀 Compressive Transformer на PyTorch — открытая реализация одной из самых загадочных архитектур ИИ!

Если ты работаешь с длинными последовательностями (NLP, музыка, временные ряды), то стандартного Transformer'а уже может быть недостаточно. Здесь на сцену выходит Compressive Transformer — и теперь его можно изучать и запускать на PyTorch благодаря открытому проекту:
🔗 http://k-a.in/pyt-comptr.html

🧠 В чём суть?

Compressive Transformer — это эволюция стандартного Transformer. Он не просто "запоминает" предыдущие токены, он сжимает память, позволяя сохранять ещё более дальний контекст без потери производительности. Это делает модель особенно ценной в задачах, где важно помнить, что происходило «много шагов назад».

📦 Что ты найдешь в проекте?

🔹 Полную реализацию на PyTorch, без зависимости от TensorFlow или сторонних обвязок
🔹 Механизм памяти с компрессией, который реально работает
🔹 Поддержка обучения и инференса на длинных последовательностях
🔹 Отличная база для экспериментов и исследований

🛠 Зачем это нужно?

• Чат-боты, которые не забывают, что ты писал 20 сообщений назад
• Генерация музыки, где важна глобальная структура
• Анализ логов и временных рядов, где значение имеет не только локальный, но и глобальный контекст

📚 Исходная архитектура была представлена DeepMind, но готовых репозиториев до сих пор крайне мало. Эта реализация — редкая возможность попробовать Compressive Transformer вживую.

👉 http://k-a.in/pyt-comptr.html

🚀 Compressive Transformer на PyTorch — открытая реализация одной из самых загадочных архитектур ИИ!

Если ты работаешь с длинными последовательностями (NLP, музыка, временные ряды), то стандартного Transformer'а уже может быть недостаточно. Здесь на сцену выходит Compressive Transformer — и теперь его можно изучать и запускать на PyTorch благодаря открытому проекту:
🔗 http://k-a.in/pyt-comptr.html

🧠 В чём суть?

Compressive Transformer — это эволюция стандартного Transformer. Он не просто "запоминает" предыдущие токены, он сжимает память, позволяя сохранять ещё более дальний контекст без потери производительности. Это делает модель особенно ценной в задачах, где важно помнить, что происходило «много шагов назад».

📦 Что ты найдешь в проекте?

🔹 Полную реализацию на PyTorch, без зависимости от TensorFlow или сторонних обвязок
🔹 Механизм памяти с компрессией, который реально работает
🔹 Поддержка обучения и инференса на длинных последовательностях
🔹 Отличная база для экспериментов и исследований

🛠 Зачем это нужно?

• Чат-боты, которые не забывают, что ты писал 20 сообщений назад
• Генерация музыки, где важна глобальная структура
• Анализ логов и временных рядов, где значение имеет не только локальный, но и глобальный контекст

📚 Исходная архитектура была представлена DeepMind, но готовых репозиториев до сих пор крайне мало. Эта реализация — редкая возможность попробовать Compressive Transformer вживую.

👉 http://k-a.in/pyt-comptr.html


>>Click here to continue<<

Machine learning Interview




Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)