scGPT-spatial - расширенная версия модели scGPT в помощь ученым-биологам для анализа пространственной транскриптомики. Основная цель scGPT-spatial — интегрировать информацию о пространственной локализации клеток и их транскриптомных профилях с знаниями scGPT для расширения понимания организации тканей и взаимодействия клеток в микроокружении.
scGPT-spatial обучалась с с учётом пространственных координат на наборе данных SpatialHuman30M (30 миллионов клеток и спотов из 4 протоколов секвенирования: Visium, Visium HD, MERFISH и Xenium) и использует архитектуру MoE.
В тестах scGPT-spatial показала отличные результаты в задачах кластеризации клеточных типов, деконволюции спотов и импутации генной экспрессии. В экспериментах на интеграцию данных из нескольких слайдов и модальностей модель обошла методы PCA и Seurat v4, достигнув показателя AvgBIO 0.86.
В задаче деконволюции клеточных типов scGPT-spatial превзошла Tangram и Cell2location, со средним Macro F1 в 0.58, а медианный коэффициент корреляции Пирсона в импутации генной экспрессии составил значение 0.6.
Веса модели опубликованы в открытом доступе, а в репозитории проекта на Github - подробная инструкция по настройке окружения для scGPT и ipynb демо-ноутбук инференса.
@ai_machinelearning_big_data
#AI #ML #MedML #ScGPT
>>Click here to continue<<

