TG Telegram Group & Channel
Машиннное обучение | Наука о данных Библиотека | United States America (US)
Create: Update:

🌟 WM-ABench: тестирование VL-моделей на понимание физики реального мира.

Мaitrix Org разработали WM-ABench, бенчмарк для оценки VLM в качестве так называемых «моделей мира». Идея проста: проверить, насколько хорошо топовые модели способны не просто распознавать картинки, а понимать окружающую действительность и предсказывать ее изменения.

Создатели, опираясь на когнитивную науку, создали фреймворк, который тестирует 15 самых популярных моделей по 23 параметрам, разделяя процесс на 2 ключевых этапа: восприятие и прогнозирование.

В основе бенчмарка - огромный датасет из более чем 100 тысяч примеров, сгенерированных в 6 различных симуляторах, от ThreeDWorld и Physion до Carla.

Чтобы модели не искали легких путей и не полагались на поверхностные совпадения, в тест добавили «сложные негативы» - контрфактические состояния, которые заставляют систему действительно анализировать происходящее.

Весь процесс был разделен на оценку восприятия (распознавание объектов, пространства, времени, движения) и прогнозирования (симуляция физики, транзитивный и композиционный вывод). Для калибровки сложности задач были установлены базовые показатели, основанные на результатах людей.

🟡Результаты.

С простым визуальным восприятием, то есть с определение цвета или формы, все модели справляются отлично. Однако когда дело доходит до трехмерного пространственного мышления, динамики движения или временных последовательностей, начинаются серьезные проблемы.

Выяснилась и другая любопытная деталь: VLM склонны «спутывать» физические понятия. Например, если в сцене изменить только цвет объекта, модель может внезапно ошибиться в оценке его размера или скорости.

Оказалось, что цвет и форма являются самыми влиятельными атрибутами, которые искажают восприятие других, не связанных с ними характеристик.

🟡Но главная проблема кроется глубже.

Точное восприятие мира совершенно не гарантирует точного прогноза.

Исследование показало, что даже при идеально верном распознавании текущего состояния сцены модели проваливают предсказание физических взаимодействий.

Разрыв с человеческими способностями явный: в задачах на транзитивный вывод он достигает 46%, а композиционный вывод выполняется на уровне случайного угадывания.

🟡Бенчмарк подсветил фундаментальный недостаток:

У современных VLM отсутствуют базовые знания физики, необходимые для симуляции даже простейших событий. Они видят мир, но не понимают, по каким законам он живет.


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Arxiv
🟡Датасет


@ai_machinelearning_big_data

#AI #ML #VLM #Benchmark #Maitrix

Forwarded from Machinelearning
🌟 WM-ABench: тестирование VL-моделей на понимание физики реального мира.

Мaitrix Org разработали WM-ABench, бенчмарк для оценки VLM в качестве так называемых «моделей мира». Идея проста: проверить, насколько хорошо топовые модели способны не просто распознавать картинки, а понимать окружающую действительность и предсказывать ее изменения.

Создатели, опираясь на когнитивную науку, создали фреймворк, который тестирует 15 самых популярных моделей по 23 параметрам, разделяя процесс на 2 ключевых этапа: восприятие и прогнозирование.

В основе бенчмарка - огромный датасет из более чем 100 тысяч примеров, сгенерированных в 6 различных симуляторах, от ThreeDWorld и Physion до Carla.

Чтобы модели не искали легких путей и не полагались на поверхностные совпадения, в тест добавили «сложные негативы» - контрфактические состояния, которые заставляют систему действительно анализировать происходящее.

Весь процесс был разделен на оценку восприятия (распознавание объектов, пространства, времени, движения) и прогнозирования (симуляция физики, транзитивный и композиционный вывод). Для калибровки сложности задач были установлены базовые показатели, основанные на результатах людей.

🟡Результаты.

С простым визуальным восприятием, то есть с определение цвета или формы, все модели справляются отлично. Однако когда дело доходит до трехмерного пространственного мышления, динамики движения или временных последовательностей, начинаются серьезные проблемы.

Выяснилась и другая любопытная деталь: VLM склонны «спутывать» физические понятия. Например, если в сцене изменить только цвет объекта, модель может внезапно ошибиться в оценке его размера или скорости.

Оказалось, что цвет и форма являются самыми влиятельными атрибутами, которые искажают восприятие других, не связанных с ними характеристик.

🟡Но главная проблема кроется глубже.

Точное восприятие мира совершенно не гарантирует точного прогноза.

Исследование показало, что даже при идеально верном распознавании текущего состояния сцены модели проваливают предсказание физических взаимодействий.

Разрыв с человеческими способностями явный: в задачах на транзитивный вывод он достигает 46%, а композиционный вывод выполняется на уровне случайного угадывания.

🟡Бенчмарк подсветил фундаментальный недостаток:

У современных VLM отсутствуют базовые знания физики, необходимые для симуляции даже простейших событий. Они видят мир, но не понимают, по каким законам он живет.


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Arxiv
🟡Датасет


@ai_machinelearning_big_data

#AI #ML #VLM #Benchmark #Maitrix
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM


>>Click here to continue<<

Машиннное обучение | Наука о данных Библиотека








Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)