Глубже — значит умнее? Или просто длиннее? Разбираемся, как языковые модели используют свои слои
В продолжение темы про mech interp в трансформерах, свежая работа Криса Маннинга и ко разбирает важность глубины трансформера и приходит к выводам, что более глубокая сеть скорее растягивает те же вычисления на большее число слоёв.
Это прикольная тема, я тоже экспериментировал с выкидыванием слоёв в LLM (можете взять код и поэкспериментировать на более новых моделях, или на более глубоких, у кого DGX под рукой есть), и в канале мы регулярно писали про подобные работы (Transformer Layers as Painters или LayerShuffle).
Ждём более умных подходов к обучению, им явно есть место!
P.S. Обновил автогенератор ревью и среди прочего пофиксил там глупую багу, из-за которой на перевод отправлялась не самая финальная версия ревью. Теперь должно стать ещё лучше, особенно это помогло в борьбе с галлюцинациями и выдумыванием ссылок. До канала такие примеры не доезжали, но проблема была регулярная.
>>Click here to continue<<
