Warning: mkdir(): No space left on device in /var/www/hottg/post.php on line 59

Warning: file_put_contents(aCache/aDaily/2025-07-17/post/gonzo_ML/--): Failed to open stream: No such file or directory in /var/www/hottg/post.php on line 72
Любопытная движуха @gonzo-обзоры ML статей
TG Telegram Group & Channel
gonzo-обзоры ML статей | United States America (US)
Create: Update:

Любопытная движуха

Analog Foundation Models
https://arxiv.org/abs/2505.09663

In this work, we introduce a general and scalable method to robustly adapt LLMs for execution on noisy, low-precision analog hardware. Our approach enables state-of-the-art models including Phi-3-mini-4k-instruct and Llama-3.2-1B-Instruct to retain performance comparable to 4-bit weight, 8-bit activation baselines, despite the presence of analog noise and quantization constraints. Additionally, we show that as a byproduct of our training methodology, analog foundation models can be quantized for inference on low-precision digital hardware. Finally, we show that our models also benefit from test-time compute scaling, showing better scaling behavior than models trained with 4-bit weight and 8-bit static input quantization. Our work bridges the gap between high-capacity LLMs and efficient analog hardware, offering a path toward energy-efficient foundation models.

Любопытная движуха

Analog Foundation Models
https://arxiv.org/abs/2505.09663

In this work, we introduce a general and scalable method to robustly adapt LLMs for execution on noisy, low-precision analog hardware. Our approach enables state-of-the-art models including Phi-3-mini-4k-instruct and Llama-3.2-1B-Instruct to retain performance comparable to 4-bit weight, 8-bit activation baselines, despite the presence of analog noise and quantization constraints. Additionally, we show that as a byproduct of our training methodology, analog foundation models can be quantized for inference on low-precision digital hardware. Finally, we show that our models also benefit from test-time compute scaling, showing better scaling behavior than models trained with 4-bit weight and 8-bit static input quantization. Our work bridges the gap between high-capacity LLMs and efficient analog hardware, offering a path toward energy-efficient foundation models.
👀33👍144


>>Click here to continue<<

gonzo-обзоры ML статей






Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)


Warning: Undefined array key 3 in /var/www/hottg/function.php on line 115

Fatal error: Uncaught mysqli_sql_exception: Can't create/write to file '/tmp/#sql-temptable-a06e-489ab9-13af.MAI' (Errcode: 28 "No space left on device") in /var/www/hottg/function.php:216 Stack trace: #0 /var/www/hottg/function.php(216): mysqli_query() #1 /var/www/hottg/function.php(115): select() #2 /var/www/hottg/post.php(351): daCache() #3 /var/www/hottg/route.php(63): include_once('...') #4 {main} thrown in /var/www/hottg/function.php on line 216