TG Telegram Group Link
Channel: Data Science | Machinelearning [ru]
Back to Bottom
⚙️ Что такое Feature Scaling в ML и зачем он нужен?

Feature Scaling (масштабирование признаков) — это приведение всех признаков к одному масштабу, чтобы модель обучалась корректно.

Некоторые алгоритмы (например, k-NN, SVM, градиентный спуск) чувствительны к разнице в диапазонах данных

➡️ Пример:

from sklearn.preprocessing import StandardScaler
import numpy as np

X = np.array([[1, 100], [2, 300], [3, 500]])

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

print(X_scaled)


🗣️ В этом примере признаки приводятся к виду с нулевым средним и единичным стандартным отклонением.


Без масштабирования одна "большая" переменная может полностью доминировать над другими..

🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥21
➡️ Объяснимый ИИ в ML и DL

Разбираемся, зачем нужен объяснимый ИИ, как подступиться к интерпретации моделей и что с этим делать на практике — от EDA до XAI на примере. Всё на русском, без магии.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
4
🧘 Перезагружайся осознанно, а не прокрастинацией

Переутомился — и вместо отдыха залипаешь в YouTube, соцсети, чат с мемами. Отдохнул? Нет.

👉 Совет: включай «активный отдых» — прогулку, растяжку, даже 5 минут с закрытыми глазами. Это реально перезагружает мозг. Прокрастинация даёт иллюзию паузы, но не даёт ресурса на следующий рывок.
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍6👎1
⚙️ Yandex Cloud представила апдейты своей платформы AI Studio на конференции Data&ML2Business.

Упор — на кастомизацию RAG под конкретные базы знаний при работе с AI Assistant API: поддерживаются таблицы, pdf, метаданные для чанков, рефразер запросов и batch-инференс. У инструмента появился визуальный интерфейс, так что не обязательно городить пайплайны руками.

Совместимость с OpenAI API упрощает интеграцию — решения на базе AI Studio легко встраиваются в LangChain, AutoGPT и другие популярные ML-стэки. При этом платформу теперь можно развернуть on-premise на собственной инфраструктуре. Также рассказали про обновления в речевой аналитике – теперь нейросети сами подберут смысловые теги для поиска нужной информации в диалогах.

Также компания представила новые решения для работы с данными – представила управляемые сервисы Spark и Trino. В Datalens добавили кастомизация графиков на JS и публичную витрину дашбордов.

Читать…
Please open Telegram to view this post
VIEW IN TELEGRAM
1
⚙️ Что такое StandardScaler из scikit-learn и зачем он нужен?

StandardScaler — это инструмент из библиотеки scikit-learn, который стандартизирует данные: приводит их к распределению со средним 0 и стандартным отклонением 1. Это важно перед обучением моделей, особенно для алгоритмов, чувствительных к масштабу (например, SVM, KNN, линейная регрессия).

➡️ Пример:

from sklearn.preprocessing import StandardScaler
import numpy as np

X = np.array([[10, 200], [15, 300], [14, 250]])

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

print(X_scaled)


➡️ После трансформации признаки будут нормализованы, что помогает улучшить сходимость и стабильность модели.

🗣️ StandardScaler — must-have шаг в пайплайне предварительной обработки данных для большинства классических ML-моделей


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
➡️ Что забирает до 90% времени на созвонах и как перестать проводить их впустую

Когда митапов больше, чем решений, пора что-то менять. Мы выработали способ делать онлайн-созвоны короче, полезнее и без «а что мы вообще решили?». Делюсь, как именно.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
1
⚙️ Что такое StandardScaler в Data Science и зачем он используется?

StandardScaler из библиотеки scikit-learn — это инструмент для нормализации данных. Он приводит признаки (столбцы данных) к одному масштабу со средним значением 0 и стандартным отклонением 1.

Это важно для алгоритмов машинного обучения, чувствительных к масштабу данных — например, линейной регрессии, SVM или KMeans.

➡️ Пример:

from sklearn.preprocessing import StandardScaler
import numpy as np

X = np.array([[10, 200],
[20, 300],
[30, 400]])

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

print(X_scaled)


🗣️ В этом примере значения всех признаков преобразуются так, что каждый столбец имеет среднее значение 0 и одинаковый масштаб. Это ускоряет обучение и повышает качество модели.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
1
⚙️ RAG: борьба с низким качеством ответов в условия экономии памяти на GPU

В статье показали, как делали ИИ-помощника на RAG для юристов внутри компании: с какими проблемами столкнулись, как прокачивали точность ответов и экономили память на видеокартах.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21
⚙️ Тиндер для работодателей и соискателей: как мы разработали алгоритм мэтчинга на Авито

Я рассказываю, как мы запилили мэтчинг в «Авито Подработке»: без анкет, но с кучей данных, офлайн-тестами и ML. Делюсь опытом, как сделать выдачу умнее и продукт лучше.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍2
👩‍💻 Вычисление “стабильных” признаков

Вам дана матрица признаков — список списков, где каждая строка представляет собой объект, а каждый столбец — отдельный числовой признак.
Ваша задача — определить, какие признаки можно считать стабильными.

Стабильный признак — это признак, у которого стандартное отклонение по всем объектам меньше заданного порога threshold.


Реализуйте функцию find_stable_features(matrix, threshold), которая возвращает список индексов признаков (столбцов), удовлетворяющих этому условию.

Решение задачи🔽

import numpy as np

def find_stable_features(matrix, threshold=0.1):
data = np.array(matrix)
stds = np.std(data, axis=0)
stable_indices = [i for i, std in enumerate(stds) if std < threshold]
return stable_indices

# Пример входных данных
X = [
[1.0, 0.5, 3.2],
[1.0, 0.49, 3.1],
[1.0, 0.52, 3.0],
[1.0, 0.5, 3.3],
]

print(find_stable_features(X, threshold=0.05))
# Ожидаемый результат: [0, 1]
Please open Telegram to view this post
VIEW IN TELEGRAM
4
⚙️ Великая иллюзия Copilot

Рассказываю, как Copilot в парном программировании может быть опаснее любой нейросети — баги, хаос, StackOverflow-копипасты и моя потерянная вера в здравый смысл.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2
⚙️ Нейросети без градиентов: спектральное моделирование и построение решений

Пробую собрать нейросеть без backpropagation — только спектр, только хардкор. Показываю на XOR и друзьях, как активации влияют на частоты и как строить модели в лоб. Будет странно, но интересно.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2
👩‍💻 Поиск коррелирующих признаков

Вам дана матрица признаков (таблица) в виде списка списков. Каждый вложенный список — это объект, каждый столбец — признак.

Нужно реализовать функцию highly_correlated_features(data, threshold), которая вернёт список пар индексов признаков, корреляция между которыми по модулю превышает указанный threshold (от 0 до 1, не включительно).

Использовать можно только корреляцию Пирсона. Повторы пар и зеркальные дубли учитывать не нужно ((1, 2) и (2, 1) — одно и то же).

Цель:

Выявить признаки, которые слишком сильно "повторяют" друг друга и могут вызвать мультиколлинеарность в моделях.


Решение задачи🔽

import numpy as np
from itertools import combinations

def pearson_corr(x, y):
x = np.array(x)
y = np.array(y)
return np.corrcoef(x, y)[0, 1]

def highly_correlated_features(data, threshold=0.9):
arr = np.array(data)
n_features = arr.shape[1]
result = []

for i, j in combinations(range(n_features), 2):
corr = pearson_corr(arr[:, i], arr[:, j])
if abs(corr) > threshold:
result.append((i, j))

return result

# Пример использования
X = [
[1, 2, 10],
[2, 4, 20],
[3, 6, 30],
[4, 8, 40],
[5, 10, 50]
]

print(highly_correlated_features(X, threshold=0.95))
# Ожидаемый результат: [(0, 1), (0, 2), (1, 2)]
Please open Telegram to view this post
VIEW IN TELEGRAM
3🐳1
⚙️ Gartner's AI Tech Sandwich: Едим ИИ-бутерброд правильно

Рассказываю, как ИИ перестал быть модной фишкой и стал бизнес-необходимостью. Плюс — что за AI Technology Sandwich придумали в Gartner и зачем им слоёная метафора.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3
👀 WorkTeam: новый мультиагентный фреймворк для автоматизации сложных бизнес-процессов

Показываю, как платформа WorkTeam превращает описания процессов на обычном языке в работающий бизнес-процесс — без кодеров, без боли и почти без магии.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👎81😁1
⚙️ Что такое data leakage в машинном обучении и почему это опасно?

Data leakage (утечка данных) — это ситуация, когда модель случайно получает информацию о будущем (о целевой переменной), которая недоступна на момент предсказания. Это приводит к переоценке качества модели во время обучения и к плохой работе на реальных данных.

➡️ Пример:

import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

# Пример: диагностические данные пациента
df = pd.DataFrame({
'age': [25, 40, 60, 35],
'blood_pressure': [120, 130, 150, 110],
'has_disease': [0, 1, 1, 0],
'diagnosis_code': [0, 1, 1, 0] # случайно совпадает с целевой переменной
})

X = df.drop('has_disease', axis=1)
y = df['has_disease']

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

model = LogisticRegression()
model.fit(X_train, y_train)
print("Train accuracy:", model.score(X_train, y_train))


🗣️ В этом примере diagnosis_code напрямую связан с целевой переменной has_disease. Модель «угадывает» ответы на тренировке, но это не работает в реальности. Такое скрытое совпадение — типичный пример data leakage
Please open Telegram to view this post
VIEW IN TELEGRAM
5
➡️ Секреты Spark в Arenadata Hadoop: как мы ускорили построение витрин для задач ML

Покажем, как связали нашу платформу ИИ и Озеро данных, чтобы модели удобно работали с витринами через Spark. Немного архитектуры, немного боли, немного магии.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
4
🤡 Endless Fun Machine: бесконечный генератор смешных картинок

Расскажу про проект Endless Fun Machine: как я собрал генератор, где ИИ сам придумывает шутки и рисует их в мемы. И заодно покажу, как это можно адаптировать для синтетических данных

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2
👩‍💻 Распознавание стабильных шаблонов в бинарных признаках

У вас есть бинарная матрица признаков (список списков из 0 и 1), где каждая строка — это объект, а каждый столбец — бинарный признак (например, наличие/отсутствие свойства).

Ваша задача — реализовать функцию find_stable_patterns(data, min_support), которая находит наиболее часто встречающиеся бинарные шаблоны и возвращает их в виде списка кортежей (или списков).

Шаблон — это строка из 0 и 1, которая в точности совпадает с признаками у нескольких объектов. Если шаблон встречается не менее min_support раз, он считается стабильным.

Решение задачи🔽

from collections import Counter

def find_stable_patterns(data, min_support=2):
# Преобразуем каждую строку в кортеж (хешируемый тип)
patterns = [tuple(row) for row in data]
counter = Counter(patterns)

# Фильтруем по min_support
stable = [list(pattern) for pattern, count in counter.items() if count >= min_support]
return stable

# Пример использования
binary_data = [
[1, 0, 1, 1],
[0, 1, 0, 0],
[1, 0, 1, 1],
[1, 0, 1, 1],
[0, 1, 0, 0],
[1, 1, 1, 0]
]

print(find_stable_patterns(binary_data, min_support=2))
# Ожидаемый результат:
# [[1, 0, 1, 1], [0, 1, 0, 0]]
Please open Telegram to view this post
VIEW IN TELEGRAM
4
HTML Embed Code:
2025/07/08 13:09:51
Back to Top