Channel: Математика Дата саентиста
Forwarded from Machinelearning
Байесовские нейронные поля (Bayes NF) - метод масштабируемого пространственно-временного прогнозирования, объединяющий архитектуру глубокой нейронной сети моделирования функций с иерархическим Байесовским моделированием для точной оценки неопределенности в сложных пространственно-временных полях.
Bayes NF строятся на основе Байесовской нейронной сети, отображающей многомерные пространственно-временные координаты в действительное поле.
Для получения высокой априорной вероятности для данных как с низко-, так и с высокочастотными вариациями, к исходным данным о времени и положении, подающимся в сеть, добавляются признаки Фурье, а чтобы учитывать априорные неопределенности, параметры сети получают априорное распределение.
Апостериорный вывод осуществляется с помощью стохастических ансамблей оценки максимального апостериори (MAP) или вариационно обученных суррогатов.
Метод Bayes NF относительно прост, он может обрабатывать пропущенные данные и обучаться по полному распределению вероятностей для произвольных пространственно-временных индексов.
Bayes NF универсален и применим к различным наборам данных без необходимости разработки новой модели для каждого случая или применения специфических для набора данных аппроксимаций вывода.
⚠️ Для локального запуска BayesNF на средних и больших объемах данных требуется GPU.
# Install bayesnf from PIP into venv:
$ python -m venv pyenv
$ source pyenv/bin/activate
$ python -m pip install -U bayesnf
# Install dependencies for Python 3.10
$ python -m pip install -r requirements.Python3.10.14.txt
@ai_machinelearning_big_data
#AI #ML #Predictions #BAYESNF
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤2🔥1
Media is too big
VIEW IN TELEGRAM
👍10❤1👎1🔥1
teorija_statistiki-shpargalki.pdf
240 KB
⚡️ Шпаргалка по статистике
Если у вас предстоят собеседования или экзамены по статистике в университете, вот полезная полная шпора. В ней рассмотрены ключевые понятия, такие как выборка, распределение, мода, медиана и другие.
Также приведено практическое занятие по статистическому наблюдению на примере производственной компании.
@data_math
Если у вас предстоят собеседования или экзамены по статистике в университете, вот полезная полная шпора. В ней рассмотрены ключевые понятия, такие как выборка, распределение, мода, медиана и другие.
Также приведено практическое занятие по статистическому наблюдению на примере производственной компании.
@data_math
❤10🔥5👍2😭1
Shpargalki_po_TRIGONOMETRII_Shkola_Pifagora.pdf
366.6 KB
⚡️ Полезные шпаргалки по математике
- Шпаргалки по ТРИГОНОМЕТРИИ
- Шпаргалки по ТЕОРИИ ВЕРОЯТНОСТЕЙ
- Шпаргалки по ПРОИЗВОДНОЙ
- Шпаргалки по ГЕОМЕТРИИ
- Шпаргалки по ТЕКСТОВЫМ ЗАДАЧАМ
@data_math
- Шпаргалки по ТРИГОНОМЕТРИИ
- Шпаргалки по ТЕОРИИ ВЕРОЯТНОСТЕЙ
- Шпаргалки по ПРОИЗВОДНОЙ
- Шпаргалки по ГЕОМЕТРИИ
- Шпаргалки по ТЕКСТОВЫМ ЗАДАЧАМ
@data_math
👍10👎8❤4🔥3😁1
Forwarded from Анализ данных (Data analysis)
♠️ Бесплатный курс от MIT: Теория и Аналитика покера
В этом курсе от MIT подробно рассматривается теория покера, математика покера и применение покерной аналитики в управлении инвестициями и трейдинге.
▪️Материалы Курса
@data_analysis_ml
В этом курсе от MIT подробно рассматривается теория покера, математика покера и применение покерной аналитики в управлении инвестициями и трейдинге.
▪️Материалы Курса
@data_analysis_ml
🔥13👍7❤3👎1😁1
A_V_Pechinkin_O_I_Teskin_G_M_Tsvetkova_i_dr_Teoria_veroyatnostey.pdf
24.3 MB
Теория вероятностей Учеб. для вузов. - 3-е изд.
А.В. Печинкин, О.И. Тескин, Г.М. Цветкова и др. (2004)
Несмотря на большое количество учебных руководств по теории вероятностей, в том числе появившихся и в последние годы, в настоящее время отсутствует учебник, предназначенный для технических университетов с усиленной математической подготовкой. Отличительной особенностью данной книги является взвешенное сочетание математической строгости изложения основ теории вероятностей с прикладной направленностью задач и примеров, иллюстрирующих теоретические положения. Каждую главу книги завершает набор большого числа контрольных вопросов, типовых примеров и задач для самостоятельного решения.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э.Баумана.
Для студентов технических университетов. Может быть полезен преподавателям и аспирантам.
@data_math
А.В. Печинкин, О.И. Тескин, Г.М. Цветкова и др. (2004)
Несмотря на большое количество учебных руководств по теории вероятностей, в том числе появившихся и в последние годы, в настоящее время отсутствует учебник, предназначенный для технических университетов с усиленной математической подготовкой. Отличительной особенностью данной книги является взвешенное сочетание математической строгости изложения основ теории вероятностей с прикладной направленностью задач и примеров, иллюстрирующих теоретические положения. Каждую главу книги завершает набор большого числа контрольных вопросов, типовых примеров и задач для самостоятельного решения.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э.Баумана.
Для студентов технических университетов. Может быть полезен преподавателям и аспирантам.
@data_math
👍15🔥4💩2🥰1
▪️GitHub
@data_math
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10🔥2🥱2
Forwarded from Machinelearning
OpenMathInstruct-2 состоит из 14 млн. пар "вопрос-решение" (примерно 600 тысяч уникальных вопросов) и является одним из крупнейших общедоступных наборов данных для обучения LLM в математике.
Набор данных создан на основе Llama-3.1-405B-Instruct путем синтеза решений для существующих вопросов из наборов данных MATH и GSM8K и генерации новых задач и решений.
Результаты абляционных экспериментов, которые проводились для поиска оптимальных параметров синтеза, показали, что:
Итоговые данные, включенные в датасет прошли тщательную деконтаминацию с использованием конвейера
lm-sys
и ручной проверки на поиск дубликатов с тестовыми наборами данных. OpenMathInstruct-2 показал высокую эффективность при обучении LLM.
Модель Llama3.1-8B-Base, обученная на OpenMathInstruct-2, превзошла Llama3.1-8B-Instruct на 15,9% по точности на наборе данных MATH, а OpenMath2-Llama3.1-70B обошла Llama3.1-70B-Instruct на 3,9%.
Датасет выпущен в 3-х размерностях: полный набор (примерно 7.5 GB) и уменьшенные версии train_1M (640 Mb), train_2M (1.3 Gb) и train_5M (3.1 Gb).
@ai_machinelearning_big_data
#AI #ML #LLM #MATH #NVIDIA #Dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥3
RamdaJS
1. Функциональное программирование с RamdaJS. Основы и блок Математики
2. Обработка строк в RamdaJS и поток вызова функций
3. Методы объектов в RamdaJS и пара полезных функций
4. Логические операции в RamdaJS
5. Функции первой необходимости в RamdaJS
6. Трансдюсеры в RamdaJS - скидка на дорогие операции
7. Линзы в RamdaJS как абстракция по работе со структурами данных
#video #js
https://www.youtube.com/watch?v=XkNynJBruKY&list=PLiZoB8JBsdzkqsILPvz5jw2-OJ5rw6ukH
1. Функциональное программирование с RamdaJS. Основы и блок Математики
2. Обработка строк в RamdaJS и поток вызова функций
3. Методы объектов в RamdaJS и пара полезных функций
4. Логические операции в RamdaJS
5. Функции первой необходимости в RamdaJS
6. Трансдюсеры в RamdaJS - скидка на дорогие операции
7. Линзы в RamdaJS как абстракция по работе со структурами данных
#video #js
https://www.youtube.com/watch?v=XkNynJBruKY&list=PLiZoB8JBsdzkqsILPvz5jw2-OJ5rw6ukH
👍2🔥2
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥31❤5👍1🥰1
Те́нзор (от лат. tensus, «напряжённый») — объект линейной алгебры, линейно преобразующий элементы одного линейного пространства в элементы другого. Частными случаями тензоров являются скаляры, векторы, билинейные формы и т. п.
▪️Github
@data_math
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10🔥5❤2🥴1
HTML Embed Code: