TG Telegram Group & Channel
Математика Дата саентиста | United States America (US)
Create: Update:

🦆 Как использовать DuckDB с Python: практическое руководство по аналитике

DuckDB — это современная in-process аналитическая СУБД, разработанная как “SQLite для аналитики”. Она идеально подходит для обработки больших объёмов данных на локальной машине без необходимости поднимать сервер или использовать тяжёлые хранилища.

📦 Что делает DuckDB особенной?
- Работает как библиотека внутри Python (через `duckdb`)
- Поддерживает SQL-запросы напрямую к pandas DataFrame, CSV, Parquet, Arrow и другим источникам
- Оптимизирована под аналитические запросы: агрегации, группировки, фильтрации
- Мгновенно работает с большими файлами без предварительной загрузки

🧪 Пример рабочего сценария:

1️⃣ Чтение и анализ Parquet-файла:


import duckdb

duckdb.sql("SELECT COUNT(*), AVG(price) FROM 'data.parquet'")


2️⃣ Интеграция с pandas:

import pandas as pd

df = pd.read_csv("data.csv")
result = duckdb.sql("SELECT category, AVG(value) FROM df GROUP BY category").df()


3️⃣ Объединение нескольких источников:

duckdb.sql("""
SELECT a.user_id, b.event_time
FROM 'users.parquet' a
JOIN read_csv('events.csv') b
ON a.user_id = b.user_id
""")


🧠 Почему это важно:
- 📊 Вы можете использовать SQL и pandas одновременно
- 🚀 DuckDB быстрее pandas в большинстве аналитических задач, особенно на больших данных
- 🧩 Поддержка стандартов данных (Parquet, Arrow) даёт нативную интеграцию с экосистемой Data Science
- 🔧 Не требует настройки: просто установите через pip install duckdb

🎯 Применения:
- Локальный анализ данных (до десятков ГБ) — без Spark
- Объединение таблиц из разных форматов (Parquet + CSV + DataFrame)
- Прототипирование ETL-пайплайнов и построение дашбордов
- Быстрая агрегация и отчёты по логам, BI-данным, IoT-стримам и пр.

📌 Советы:
- Используйте read_parquet, read_csv_auto и from_df() для гибкой загрузки данных
- Результаты запросов можно конвертировать обратно в pandas через .df()
- DuckDB поддерживает оконные функции, GROUP BY, JOIN, UNION, LIMIT, подзапросы и многое другое — это полноценный SQL-движок

🔗 Подробный гайд:
https://www.kdnuggets.com/integrating-duckdb-python-an-analytics-guide

#DuckDB #Python #DataScience #Analytics #SQL #Pandas #Parquet #BigData

🦆 Как использовать DuckDB с Python: практическое руководство по аналитике

DuckDB — это современная in-process аналитическая СУБД, разработанная как “SQLite для аналитики”. Она идеально подходит для обработки больших объёмов данных на локальной машине без необходимости поднимать сервер или использовать тяжёлые хранилища.

📦 Что делает DuckDB особенной?
- Работает как библиотека внутри Python (через `duckdb`)
- Поддерживает SQL-запросы напрямую к pandas DataFrame, CSV, Parquet, Arrow и другим источникам
- Оптимизирована под аналитические запросы: агрегации, группировки, фильтрации
- Мгновенно работает с большими файлами без предварительной загрузки

🧪 Пример рабочего сценария:

1️⃣ Чтение и анализ Parquet-файла:

import duckdb

duckdb.sql("SELECT COUNT(*), AVG(price) FROM 'data.parquet'")


2️⃣ Интеграция с pandas:

import pandas as pd

df = pd.read_csv("data.csv")
result = duckdb.sql("SELECT category, AVG(value) FROM df GROUP BY category").df()


3️⃣ Объединение нескольких источников:

duckdb.sql("""
SELECT a.user_id, b.event_time
FROM 'users.parquet' a
JOIN read_csv('events.csv') b
ON a.user_id = b.user_id
""")


🧠 Почему это важно:
- 📊 Вы можете использовать SQL и pandas одновременно
- 🚀 DuckDB быстрее pandas в большинстве аналитических задач, особенно на больших данных
- 🧩 Поддержка стандартов данных (Parquet, Arrow) даёт нативную интеграцию с экосистемой Data Science
- 🔧 Не требует настройки: просто установите через pip install duckdb

🎯 Применения:
- Локальный анализ данных (до десятков ГБ) — без Spark
- Объединение таблиц из разных форматов (Parquet + CSV + DataFrame)
- Прототипирование ETL-пайплайнов и построение дашбордов
- Быстрая агрегация и отчёты по логам, BI-данным, IoT-стримам и пр.

📌 Советы:
- Используйте read_parquet, read_csv_auto и from_df() для гибкой загрузки данных
- Результаты запросов можно конвертировать обратно в pandas через .df()
- DuckDB поддерживает оконные функции, GROUP BY, JOIN, UNION, LIMIT, подзапросы и многое другое — это полноценный SQL-движок

🔗 Подробный гайд:
https://www.kdnuggets.com/integrating-duckdb-python-an-analytics-guide

#DuckDB #Python #DataScience #Analytics #SQL #Pandas #Parquet #BigData


>>Click here to continue<<

Математика Дата саентиста




Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)