Channel: Machinelearning
🧬 Chai‑2: перспективный инструмент для дизайна антител с помощью ИИ
Несмотря на прогресс в проектировании белков, создать рабочие антитела с нуля до сих пор было почти невозможно.
Но новая модель Chai‑2 менянт правила игры.
Chai‑2 — это мультимодальная генеративная модель, которая впервые позволяет проектировать функциональные антитела de novo ( в биологии и биоинформатике означает создание чего-либо с полного нуля, без использования готовых шаблонов или существующих структур.) с высокой точностью.
📊 Результаты:
• 16% антител показали нужную биологическую активность при генерации с нуля — это в 100+ раз лучше, чем у предыдущих методов (аньше hit-rate был <0.1%)
• Создано ≤20 антител для 52 уникальных целей (это разные белки, молекулы или структуры, к которым ИИ должен был спроектировать подходящие антитела)
• Найдены активные антитела для 50% целей — всего за один цикл лабораторного тестирования
• Из 100 спроектированных минибелков 68 реально работали, как задумано, в лабораторных тестах.
🧪 ИИ придумывает молекулу → учёные её синтезируют → тестируют в лаборатории — и всё это занимает меньше двух недель. Раньше на такой цикл уходили месяцы или даже годы.
📦 Почему это важно:
• Такой метод ускоряет разработку антител и препаратов
• Убирает необходимость в дорогостоящем скрининге миллионов вариантов
• Даёт возможность атомарного дизайна молекул под конкретные мишени
📄 Полный отчет: chaiassets.com/chai-2/paper/technical_report.pdf
@ai_machinelearning_big_data
#ml #biotech #ai
Несмотря на прогресс в проектировании белков, создать рабочие антитела с нуля до сих пор было почти невозможно.
Но новая модель Chai‑2 менянт правила игры.
Chai‑2 — это мультимодальная генеративная модель, которая впервые позволяет проектировать функциональные антитела de novo ( в биологии и биоинформатике означает создание чего-либо с полного нуля, без использования готовых шаблонов или существующих структур.) с высокой точностью.
📊 Результаты:
• 16% антител показали нужную биологическую активность при генерации с нуля — это в 100+ раз лучше, чем у предыдущих методов (аньше hit-rate был <0.1%)
• Создано ≤20 антител для 52 уникальных целей (это разные белки, молекулы или структуры, к которым ИИ должен был спроектировать подходящие антитела)
• Найдены активные антитела для 50% целей — всего за один цикл лабораторного тестирования
• Из 100 спроектированных минибелков 68 реально работали, как задумано, в лабораторных тестах.
🧪 ИИ придумывает молекулу → учёные её синтезируют → тестируют в лаборатории — и всё это занимает меньше двух недель. Раньше на такой цикл уходили месяцы или даже годы.
📦 Почему это важно:
• Такой метод ускоряет разработку антител и препаратов
• Убирает необходимость в дорогостоящем скрининге миллионов вариантов
• Даёт возможность атомарного дизайна молекул под конкретные мишени
📄 Полный отчет: chaiassets.com/chai-2/paper/technical_report.pdf
@ai_machinelearning_big_data
#ml #biotech #ai
📺 4 из 10 самых популярных YouTube‑каналов теперь создаются ИИ
Звучит как шутка, но это уже реальность: среди топ‑10 каналов YouTube по числу просмотров — 4 полностью сгенерированы ИИ.
Никаких блогеров, продюсеров и съёмок. Только скрипты, голоса, монтаж — всё на автомате. И миллиарды просмотров.
🤖 Добро пожаловать в эру synthetic media.
👉 Подробнее
@ai_machinelearning_big_data
#ml #ai #YouTube
Звучит как шутка, но это уже реальность: среди топ‑10 каналов YouTube по числу просмотров — 4 полностью сгенерированы ИИ.
Никаких блогеров, продюсеров и съёмок. Только скрипты, голоса, монтаж — всё на автомате. И миллиарды просмотров.
🤖 Добро пожаловать в эру synthetic media.
👉 Подробнее
@ai_machinelearning_big_data
#ml #ai #YouTube
HTML Embed Code: