Warning: mkdir(): No space left on device in /var/www/hottg/post.php on line 59

Warning: file_put_contents(aCache/aDaily/2025-07-21/post/ai_machinelearning_big_data/--): Failed to open stream: No such file or directory in /var/www/hottg/post.php on line 72
📌Tokasaurus: проект для ускорения работы с языковыми моделями. @Machinelearning
TG Telegram Group & Channel
Machinelearning | United States America (US)
Create: Update:

📌Tokasaurus: проект для ускорения работы с языковыми моделями.

Tokasaurus — это движок инференса для языковых моделей в режиме высоконагруженных задач. Он максимизирует пропускную способность при работе с LLM, предлагает поддержку API OpenAI, эффективно управляет памятью и оптимизирует вычисления в сценариях, где важно одновременно обрабатывать множество запросов без задержек.

Архитектура Tokasaurus разделена на 3 компонента: веб-сервер, менеджер и модельные воркеры.

🟢Веб-сервер отвечает за взаимодействие с клиентами, принимая запросы и отправляя ответы.

🟢Менеджер, запущенный в отдельном процессе, управляет планированием задач, KV-кешем и группировкой последовательностей с общими префиксами.

🟢Модельные воркеры выполняют прямые запросы к подключенным LLM. Компоненты обмениваются данными асинхронно через очереди, и это позволяет держать GPU загруженным без простоев.

Проект учитывает растущую потребность в масштабировании и предлагает 3 типа параллелизма: дата-параллелизм (dp_size), пайплайн (pp_size) и тензорный (tp_size) с поддержкой AsyncTP.

Async Tensor Parallelism в PyTorch — это техника ускорения распределенных вычислений для LLM, где операции связи (all-gather/reduce-scatter) разбиваются на асинхронные части и перекрываются с матричными умножениями (matmul) с помощью чередующихся CUDA-потоков: пока один поток вычисляет фрагмент matmul, другой параллельно передаtт данные для следующего фрагмента через P2P-копирование (NVLink + copy engines), минимизируя простои GPU.


При использовании нескольких GPU, например, dp_size=2 и pp_size=4, система задействует 8 GPU, создавая 2 дублирующиеся группы по 4 GPU каждая. При этом параметры управления памятью (kv_cache_size_num_tokens, max_seqs_per_forward) применяются к каждой дата-параллельной группе отдельно. Это позволяет тонко управлять ресурсами, исходя из контекста конкретных нагрузок.

Tokasaurus поддерживает модели семейств Llama3 и Qwen2, использует технологию Hydragen для ускорения внимания над общими префиксами последовательностей.

⚠️ Проект пока молодой, поэтому некоторые функции могут быть нестабильными. Разработчики активно работают над улучшениями.


📌 Лицензирование: Apache 2.0 License.


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM # #Tokasaurus #Github

📌Tokasaurus: проект для ускорения работы с языковыми моделями.

Tokasaurus — это движок инференса для языковых моделей в режиме высоконагруженных задач. Он максимизирует пропускную способность при работе с LLM, предлагает поддержку API OpenAI, эффективно управляет памятью и оптимизирует вычисления в сценариях, где важно одновременно обрабатывать множество запросов без задержек.

Архитектура Tokasaurus разделена на 3 компонента: веб-сервер, менеджер и модельные воркеры.

🟢Веб-сервер отвечает за взаимодействие с клиентами, принимая запросы и отправляя ответы.

🟢Менеджер, запущенный в отдельном процессе, управляет планированием задач, KV-кешем и группировкой последовательностей с общими префиксами.

🟢Модельные воркеры выполняют прямые запросы к подключенным LLM. Компоненты обмениваются данными асинхронно через очереди, и это позволяет держать GPU загруженным без простоев.

Проект учитывает растущую потребность в масштабировании и предлагает 3 типа параллелизма: дата-параллелизм (dp_size), пайплайн (pp_size) и тензорный (tp_size) с поддержкой AsyncTP.

Async Tensor Parallelism в PyTorch — это техника ускорения распределенных вычислений для LLM, где операции связи (all-gather/reduce-scatter) разбиваются на асинхронные части и перекрываются с матричными умножениями (matmul) с помощью чередующихся CUDA-потоков: пока один поток вычисляет фрагмент matmul, другой параллельно передаtт данные для следующего фрагмента через P2P-копирование (NVLink + copy engines), минимизируя простои GPU.


При использовании нескольких GPU, например, dp_size=2 и pp_size=4, система задействует 8 GPU, создавая 2 дублирующиеся группы по 4 GPU каждая. При этом параметры управления памятью (kv_cache_size_num_tokens, max_seqs_per_forward) применяются к каждой дата-параллельной группе отдельно. Это позволяет тонко управлять ресурсами, исходя из контекста конкретных нагрузок.

Tokasaurus поддерживает модели семейств Llama3 и Qwen2, использует технологию Hydragen для ускорения внимания над общими префиксами последовательностей.

⚠️ Проект пока молодой, поэтому некоторые функции могут быть нестабильными. Разработчики активно работают над улучшениями.


📌 Лицензирование: Apache 2.0 License.


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM # #Tokasaurus #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5122🔥12🥰6😨1


>>Click here to continue<<

Machinelearning






Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)


Warning: Undefined array key 3 in /var/www/hottg/function.php on line 115

Fatal error: Uncaught mysqli_sql_exception: Can't create/write to file '/tmp/#sql-temptable-a06e-5eff5c-30d2.MAI' (Errcode: 28 "No space left on device") in /var/www/hottg/function.php:216 Stack trace: #0 /var/www/hottg/function.php(216): mysqli_query() #1 /var/www/hottg/function.php(115): select() #2 /var/www/hottg/post.php(351): daCache() #3 /var/www/hottg/route.php(63): include_once('...') #4 {main} thrown in /var/www/hottg/function.php on line 216