TG Telegram Group Link
Channel: Hard Question Series💪🏻
Back to Bottom
Forwarded from ☆☬KɪɴɢAͥbͣhͫͥΐ༻☆
Forwarded from ☆☬KɪɴɢAͥbͣhͫͥΐ༻☆
Forwarded from Z Advance Math
Forwarded from Mehak
Forwarded from °FSociety°
Forwarded from Deleted Account
Forwarded from °FSociety°
Forwarded from 0438/62_Mridul
Last 2 digits of 87^474
@Abhi_Infinity John
Forwarded from °FSociety°
(90 - 3)⁴⁷⁴

Binomial

(474 * 90 * (-3)⁴⁷³ + (-3)⁴⁷⁴ ) mod 100

(6*20 + 69) mod 100

89
Forwarded from °FSociety°
Sum(n*n! )= (n + 1)! - 1

So

(100! - 1) mod 67

-1 mod 67

66
Hard Question Series💪🏻
Last 2 digits of 87^474 @Abhi_Infinity John
Consider only last two digit and reduce its power

87^474 == 69^237 == (09)^79
==(09)*(81^39)
==09 *21
= 89
Hard Question Series💪🏻
Last 2 digits of 87^474 @Abhi_Infinity John
87^474
13^474. (87=(100-87)=13)
13^(2*237)
169^237
69^237(consider last two digits)

69*69^236
69*(19^236) ((69=(69-50)=19)
69*(19^2*118)
69*(361^118)
69(61^118)
69*(81) ((abc1^pqr== c*r1))
5589
89(last two digits)
Forwarded from ☆☬KɪɴɢAͥbͣhͫͥΐ༻☆
Forwarded from DilKhusH MeeNa
Forwarded from ☆☬KɪɴɢAͥbͣhͫͥΐ༻☆
HTML Embed Code:
2025/07/01 12:10:49
Back to Top